reactphysics3d/src/collision/narrowphase/ConcaveVsConvexAlgorithm.cpp
2016-01-05 18:39:22 +01:00

289 lines
14 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2015 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "collision/shapes/ConcaveShape.h"
#include "collision/shapes/TriangleShape.h"
#include "ConcaveVsConvexAlgorithm.h"
#include "collision/CollisionDetection.h"
#include "engine/CollisionWorld.h"
#include <algorithm>
using namespace reactphysics3d;
// Constructor
ConcaveVsConvexAlgorithm::ConcaveVsConvexAlgorithm() {
}
// Destructor
ConcaveVsConvexAlgorithm::~ConcaveVsConvexAlgorithm() {
}
// Return true and compute a contact info if the two bounding volumes collide
void ConcaveVsConvexAlgorithm::testCollision(const CollisionShapeInfo& shape1Info,
const CollisionShapeInfo& shape2Info,
NarrowPhaseCallback* narrowPhaseCallback) {
ProxyShape* convexProxyShape;
ProxyShape* concaveProxyShape;
const ConvexShape* convexShape;
const ConcaveShape* concaveShape;
// Collision shape 1 is convex, collision shape 2 is concave
if (shape1Info.collisionShape->isConvex()) {
convexProxyShape = shape1Info.proxyShape;
convexShape = static_cast<const ConvexShape*>(shape1Info.collisionShape);
concaveProxyShape = shape2Info.proxyShape;
concaveShape = static_cast<const ConcaveShape*>(shape2Info.collisionShape);
}
else { // Collision shape 2 is convex, collision shape 1 is concave
convexProxyShape = shape2Info.proxyShape;
convexShape = static_cast<const ConvexShape*>(shape2Info.collisionShape);
concaveProxyShape = shape1Info.proxyShape;
concaveShape = static_cast<const ConcaveShape*>(shape1Info.collisionShape);
}
// Set the parameters of the callback object
mConvexVsTriangleCallback.setCollisionDetection(mCollisionDetection);
mConvexVsTriangleCallback.setConvexShape(convexShape);
mConvexVsTriangleCallback.setProxyShapes(convexProxyShape, concaveProxyShape);
mConvexVsTriangleCallback.setOverlappingPair(shape1Info.overlappingPair);
// Compute the convex shape AABB in the local-space of the convex shape
AABB aabb;
convexShape->computeAABB(aabb, convexProxyShape->getLocalToWorldTransform());
// If smooth mesh collision is enabled for the concave mesh
if (concaveShape->getIsSmoothMeshCollisionEnabled()) {
std::vector<SmoothMeshContactInfo> contactPoints;
SmoothCollisionNarrowPhaseCallback smoothNarrowPhaseCallback(contactPoints);
mConvexVsTriangleCallback.setNarrowPhaseCallback(&smoothNarrowPhaseCallback);
// Call the convex vs triangle callback for each triangle of the concave shape
concaveShape->testAllTriangles(mConvexVsTriangleCallback, aabb);
// Run the smooth mesh collision algorithm
processSmoothMeshCollision(shape1Info.overlappingPair, contactPoints, narrowPhaseCallback);
}
else {
mConvexVsTriangleCallback.setNarrowPhaseCallback(narrowPhaseCallback);
// Call the convex vs triangle callback for each triangle of the concave shape
concaveShape->testAllTriangles(mConvexVsTriangleCallback, aabb);
}
}
// Test collision between a triangle and the convex mesh shape
void ConvexVsTriangleCallback::testTriangle(const Vector3* trianglePoints) {
// Create a triangle collision shape
TriangleShape triangleShape(trianglePoints[0], trianglePoints[1], trianglePoints[2]);
// Select the collision algorithm to use between the triangle and the convex shape
NarrowPhaseAlgorithm* algo = mCollisionDetection->getCollisionAlgorithm(triangleShape.getType(),
mConvexShape->getType());
// If there is no collision algorithm between those two kinds of shapes
if (algo == NULL) return;
// Notify the narrow-phase algorithm about the overlapping pair we are going to test
algo->setCurrentOverlappingPair(mOverlappingPair);
// Create the CollisionShapeInfo objects
CollisionShapeInfo shapeConvexInfo(mConvexProxyShape, mConvexShape, mConvexProxyShape->getLocalToWorldTransform(),
mOverlappingPair, mConvexProxyShape->getCachedCollisionData());
CollisionShapeInfo shapeConcaveInfo(mConcaveProxyShape, &triangleShape,
mConcaveProxyShape->getLocalToWorldTransform(),
mOverlappingPair, mConcaveProxyShape->getCachedCollisionData());
// Use the collision algorithm to test collision between the triangle and the other convex shape
algo->testCollision(shapeConvexInfo, shapeConcaveInfo, mNarrowPhaseCallback);
}
// Process the concave triangle mesh collision using the smooth mesh collision algorithm described
// by Pierre Terdiman (http://www.codercorner.com/MeshContacts.pdf). This is used to avoid the collision
// issue with some internal edges.
void ConcaveVsConvexAlgorithm::processSmoothMeshCollision(OverlappingPair* overlappingPair,
std::vector<SmoothMeshContactInfo> contactPoints,
NarrowPhaseCallback* narrowPhaseCallback) {
// Set with the triangle vertices already processed to void further contacts with same triangle
std::unordered_multimap<int, Vector3> processTriangleVertices;
// Sort the list of narrow-phase contacts according to their penetration depth
std::sort(contactPoints.begin(), contactPoints.end(), ContactsDepthCompare());
// For each contact point (from smaller penetration depth to larger)
std::vector<SmoothMeshContactInfo>::const_iterator it;
for (it = contactPoints.begin(); it != contactPoints.end(); ++it) {
const SmoothMeshContactInfo info = *it;
const Vector3& contactPoint = info.isFirstShapeTriangle ? info.contactInfo.localPoint1 : info.contactInfo.localPoint2;
// Compute the barycentric coordinates of the point in the triangle
decimal u, v, w;
computeBarycentricCoordinatesInTriangle(info.triangleVertices[0],
info.triangleVertices[1],
info.triangleVertices[2],
contactPoint, u, v, w);
int nbZeros = 0;
bool isUZero = approxEqual(u, 0, 0.0001);
bool isVZero = approxEqual(v, 0, 0.0001);
bool isWZero = approxEqual(w, 0, 0.0001);
if (isUZero) nbZeros++;
if (isVZero) nbZeros++;
if (isWZero) nbZeros++;
// If it is a vertex contact
if (nbZeros == 2) {
Vector3 contactVertex = !isUZero ? info.triangleVertices[0] : (!isVZero ? info.triangleVertices[1] : info.triangleVertices[2]);
// Check that this triangle vertex has not been processed yet
if (!hasVertexBeenProcessed(processTriangleVertices, contactVertex)) {
// Keep the contact as it is and report it
narrowPhaseCallback->notifyContact(overlappingPair, info.contactInfo);
}
}
else if (nbZeros == 1) { // If it is an edge contact
Vector3 contactVertex1 = isUZero ? info.triangleVertices[1] : (isVZero ? info.triangleVertices[0] : info.triangleVertices[0]);
Vector3 contactVertex2 = isUZero ? info.triangleVertices[2] : (isVZero ? info.triangleVertices[2] : info.triangleVertices[1]);
// Check that this triangle edge has not been processed yet
if (!hasVertexBeenProcessed(processTriangleVertices, contactVertex1) &&
!hasVertexBeenProcessed(processTriangleVertices, contactVertex2)) {
// Keep the contact as it is and report it
narrowPhaseCallback->notifyContact(overlappingPair, info.contactInfo);
}
}
else { // If it is a face contact
ContactPointInfo newContactInfo(info.contactInfo);
ProxyShape* firstShape;
ProxyShape* secondShape;
if (info.isFirstShapeTriangle) {
firstShape = overlappingPair->getShape1();
secondShape = overlappingPair->getShape2();
}
else {
firstShape = overlappingPair->getShape2();
secondShape = overlappingPair->getShape1();
}
// We use the triangle normal as the contact normal
Vector3 a = info.triangleVertices[1] - info.triangleVertices[0];
Vector3 b = info.triangleVertices[2] - info.triangleVertices[0];
Vector3 localNormal = a.cross(b);
newContactInfo.normal = firstShape->getLocalToWorldTransform().getOrientation() * localNormal;
Vector3 firstLocalPoint = info.isFirstShapeTriangle ? info.contactInfo.localPoint1 : info.contactInfo.localPoint2;
Vector3 firstWorldPoint = firstShape->getLocalToWorldTransform() * firstLocalPoint;
newContactInfo.normal.normalize();
if (newContactInfo.normal.dot(info.contactInfo.normal) < 0) {
newContactInfo.normal = -newContactInfo.normal;
}
// We recompute the contact point on the second body with the new normal as described in
// the Smooth Mesh Contacts with GJK of the Game Physics Pearls book (from Gino van Den Bergen and
// Dirk Gregorius) to avoid adding torque
Transform worldToLocalSecondPoint = secondShape->getLocalToWorldTransform().getInverse();
if (info.isFirstShapeTriangle) {
Vector3 newSecondWorldPoint = firstWorldPoint + newContactInfo.normal;
newContactInfo.localPoint2 = worldToLocalSecondPoint * newSecondWorldPoint;
}
else {
Vector3 newSecondWorldPoint = firstWorldPoint - newContactInfo.normal;
newContactInfo.localPoint1 = worldToLocalSecondPoint * newSecondWorldPoint;
}
// Report the contact
narrowPhaseCallback->notifyContact(overlappingPair, newContactInfo);
}
// Add the three vertices of the triangle to the set of processed
// triangle vertices
addProcessedVertex(processTriangleVertices, info.triangleVertices[0]);
addProcessedVertex(processTriangleVertices, info.triangleVertices[1]);
addProcessedVertex(processTriangleVertices, info.triangleVertices[2]);
}
}
// Return true if the vertex is in the set of already processed vertices
bool ConcaveVsConvexAlgorithm::hasVertexBeenProcessed(const std::unordered_multimap<int, Vector3>& processTriangleVertices, const Vector3& vertex) const {
int key = int(vertex.x * vertex.y * vertex.z);
auto range = processTriangleVertices.equal_range(key);
for (auto it = range.first; it != range.second; ++it) {
if (vertex.x == it->second.x && vertex.y == it->second.y && vertex.z == it->second.z) return true;
}
return false;
}
// Called by a narrow-phase collision algorithm when a new contact has been found
void SmoothCollisionNarrowPhaseCallback::notifyContact(OverlappingPair* overlappingPair,
const ContactPointInfo& contactInfo) {
Vector3 triangleVertices[3];
bool isFirstShapeTriangle;
// If the collision shape 1 is the triangle
if (contactInfo.collisionShape1->getType() == TRIANGLE) {
assert(contactInfo.collisionShape2->getType() != TRIANGLE);
const TriangleShape* triangleShape = static_cast<const TriangleShape*>(contactInfo.collisionShape1);
triangleVertices[0] = triangleShape->getVertex(0);
triangleVertices[1] = triangleShape->getVertex(1);
triangleVertices[2] = triangleShape->getVertex(2);
isFirstShapeTriangle = true;
}
else { // If the collision shape 2 is the triangle
assert(contactInfo.collisionShape2->getType() == TRIANGLE);
const TriangleShape* triangleShape = static_cast<const TriangleShape*>(contactInfo.collisionShape2);
triangleVertices[0] = triangleShape->getVertex(0);
triangleVertices[1] = triangleShape->getVertex(1);
triangleVertices[2] = triangleShape->getVertex(2);
isFirstShapeTriangle = false;
}
SmoothMeshContactInfo smoothContactInfo(contactInfo, isFirstShapeTriangle, triangleVertices[0], triangleVertices[1], triangleVertices[2]);
// Add the narrow-phase contact into the list of contact to process for
// smooth mesh collision
mContactPoints.push_back(smoothContactInfo);
}