git-svn-id: https://reactphysics3d.googlecode.com/svn/trunk@448 92aac97c-a6ce-11dd-a772-7fcde58d38e6
172 lines
8.9 KiB
C++
172 lines
8.9 KiB
C++
/********************************************************************************
|
|
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
|
|
* Copyright (c) 2010 Daniel Chappuis *
|
|
*********************************************************************************
|
|
* *
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy *
|
|
* of this software and associated documentation files (the "Software"), to deal *
|
|
* in the Software without restriction, including without limitation the rights *
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell *
|
|
* copies of the Software, and to permit persons to whom the Software is *
|
|
* furnished to do so, subject to the following conditions: *
|
|
* *
|
|
* The above copyright notice and this permission notice shall be included in *
|
|
* all copies or substantial portions of the Software. *
|
|
* *
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE *
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER *
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, *
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN *
|
|
* THE SOFTWARE. *
|
|
********************************************************************************/
|
|
|
|
// Libraries
|
|
#include "Contact.h"
|
|
|
|
using namespace reactphysics3d;
|
|
using namespace std;
|
|
|
|
// Constructor
|
|
Contact::Contact(const ContactInfo* contactInfo)
|
|
: Constraint(contactInfo->body1, contactInfo->body2, 3, true), normal(contactInfo->normal), penetrationDepth(contactInfo->penetrationDepth),
|
|
localPointOnBody1(contactInfo->localPoint1), localPointOnBody2(contactInfo->localPoint2),
|
|
worldPointOnBody1(contactInfo->worldPoint1), worldPointOnBody2(contactInfo->worldPoint2) {
|
|
assert(penetrationDepth > 0.0);
|
|
|
|
// Compute the auxiliary lower and upper bounds
|
|
// TODO : Now mC is only the mass of the first body but it is probably wrong
|
|
// TODO : Now g is 9.81 but we should use the true gravity value of the physics world.
|
|
mu_mc_g = FRICTION_COEFFICIENT * body1->getMass() * 9.81;
|
|
|
|
// Compute the friction vectors that span the tangential friction plane
|
|
computeFrictionVectors();
|
|
}
|
|
|
|
// Destructor
|
|
Contact::~Contact() {
|
|
|
|
}
|
|
|
|
// This method computes the jacobian matrix for all mathematical constraints
|
|
// The argument "J_sp" is the jacobian matrix of the constraint solver. This method
|
|
// fill in this matrix with all the jacobian matrix of the mathematical constraint
|
|
// of the contact. The argument "noConstraint", is the row were the method have
|
|
// to start to fill in the J_sp matrix.
|
|
void Contact::computeJacobian(int noConstraint, double J_sp[NB_MAX_CONSTRAINTS][2*6]) const {
|
|
assert(body1);
|
|
assert(body2);
|
|
|
|
Vector3 body1Position = body1->getTransform().getPosition();
|
|
Vector3 body2Position = body2->getTransform().getPosition();
|
|
int currentIndex = noConstraint; // Current constraint index
|
|
|
|
Vector3 r1 = worldPointOnBody1 - body1Position;
|
|
Vector3 r2 = worldPointOnBody2 - body2Position;
|
|
Vector3 r1CrossN = r1.cross(normal);
|
|
Vector3 r2CrossN = r2.cross(normal);
|
|
|
|
// Compute the jacobian matrix for the body 1 for the contact constraint
|
|
J_sp[currentIndex][0] = -normal.getX();
|
|
J_sp[currentIndex][1] = -normal.getY();
|
|
J_sp[currentIndex][2] = -normal.getZ();
|
|
J_sp[currentIndex][3] = -r1CrossN.getX();
|
|
J_sp[currentIndex][4] = -r1CrossN.getY();
|
|
J_sp[currentIndex][5] = -r1CrossN.getZ();
|
|
|
|
// Compute the jacobian matrix for the body 2 for the contact constraint
|
|
J_sp[currentIndex][6] = normal.getX();
|
|
J_sp[currentIndex][7] = normal.getY();
|
|
J_sp[currentIndex][8] = normal.getZ();
|
|
J_sp[currentIndex][9] = r2CrossN.getX();
|
|
J_sp[currentIndex][10] = r2CrossN.getY();
|
|
J_sp[currentIndex][11] = r2CrossN.getZ();
|
|
|
|
currentIndex++;
|
|
|
|
// Compute the jacobian matrix for the body 1 for the first friction constraint
|
|
Vector3 r1CrossU1 = r1.cross(frictionVectors[0]);
|
|
Vector3 r2CrossU1 = r2.cross(frictionVectors[0]);
|
|
Vector3 r1CrossU2 = r1.cross(frictionVectors[1]);
|
|
Vector3 r2CrossU2 = r2.cross(frictionVectors[1]);
|
|
J_sp[currentIndex][0] = -frictionVectors[0].getX();
|
|
J_sp[currentIndex][1] = -frictionVectors[0].getY();
|
|
J_sp[currentIndex][2] = -frictionVectors[0].getZ();
|
|
J_sp[currentIndex][3] = -r1CrossU1.getX();
|
|
J_sp[currentIndex][4] = -r1CrossU1.getY();
|
|
J_sp[currentIndex][5] = -r1CrossU1.getZ();
|
|
|
|
// Compute the jacobian matrix for the body 2 for the first friction constraint
|
|
J_sp[currentIndex][6] = frictionVectors[0].getX();
|
|
J_sp[currentIndex][7] = frictionVectors[0].getY();
|
|
J_sp[currentIndex][8] = frictionVectors[0].getZ();
|
|
J_sp[currentIndex][9] = r2CrossU1.getX();
|
|
J_sp[currentIndex][10] = r2CrossU1.getY();
|
|
J_sp[currentIndex][11] = r2CrossU1.getZ();
|
|
|
|
currentIndex++;
|
|
|
|
// Compute the jacobian matrix for the body 1 for the second friction constraint
|
|
J_sp[currentIndex][0] = -frictionVectors[1].getX();
|
|
J_sp[currentIndex][1] = -frictionVectors[1].getY();
|
|
J_sp[currentIndex][2] = -frictionVectors[1].getZ();
|
|
J_sp[currentIndex][3] = -r1CrossU2.getX();
|
|
J_sp[currentIndex][4] = -r1CrossU2.getY();
|
|
J_sp[currentIndex][5] = -r1CrossU2.getZ();
|
|
|
|
// Compute the jacobian matrix for the body 2 for the second friction constraint
|
|
J_sp[currentIndex][6] = frictionVectors[1].getX();
|
|
J_sp[currentIndex][7] = frictionVectors[1].getY();
|
|
J_sp[currentIndex][8] = frictionVectors[1].getZ();
|
|
J_sp[currentIndex][9] = r2CrossU2.getX();
|
|
J_sp[currentIndex][10] = r2CrossU2.getY();
|
|
J_sp[currentIndex][11] = r2CrossU2.getZ();
|
|
}
|
|
|
|
// Compute the lowerbounds values for all the mathematical constraints. The
|
|
// argument "lowerBounds" is the lowerbounds values vector of the constraint solver and
|
|
// this methods has to fill in this vector starting from the row "noConstraint"
|
|
void Contact::computeLowerBound(int noConstraint, double lowerBounds[NB_MAX_CONSTRAINTS]) const {
|
|
assert(noConstraint >= 0 && noConstraint + nbConstraints <= NB_MAX_CONSTRAINTS);
|
|
|
|
lowerBounds[noConstraint] = 0.0; // Lower bound for the contact constraint
|
|
lowerBounds[noConstraint + 1] = -mu_mc_g; // Lower bound for the first friction constraint
|
|
lowerBounds[noConstraint + 2] = -mu_mc_g; // Lower bound for the second friction constraint
|
|
}
|
|
|
|
// Compute the upperbounds values for all the mathematical constraints. The
|
|
// argument "upperBounds" is the upperbounds values vector of the constraint solver and
|
|
// this methods has to fill in this vector starting from the row "noConstraint"
|
|
void Contact::computeUpperBound(int noConstraint, double upperBounds[NB_MAX_CONSTRAINTS]) const {
|
|
assert(noConstraint >= 0 && noConstraint + nbConstraints <= NB_MAX_CONSTRAINTS);
|
|
|
|
upperBounds[noConstraint] = INFINITY_CONST; // Upper bound for the contact constraint
|
|
upperBounds[noConstraint + 1] = mu_mc_g; // Upper bound for the first friction constraint
|
|
upperBounds[noConstraint + 2] = mu_mc_g; // Upper bound for the second friction constraint
|
|
}
|
|
|
|
// Compute the error values for all the mathematical constraints. The argument
|
|
// "errorValues" is the error values vector of the constraint solver and this
|
|
// method has to fill in this vector starting from the row "noConstraint"
|
|
void Contact::computeErrorValue(int noConstraint, double errorValues[], double penetrationFactor) const {
|
|
assert(body1);
|
|
assert(body2);
|
|
|
|
// TODO : Do we need this casting anymore
|
|
RigidBody* rigidBody1 = dynamic_cast<RigidBody*>(body1);
|
|
RigidBody* rigidBody2 = dynamic_cast<RigidBody*>(body2);
|
|
|
|
assert(noConstraint >= 0 && noConstraint + nbConstraints <= NB_MAX_CONSTRAINTS);
|
|
|
|
// Compute the error value for the contact constraint
|
|
Vector3 velocity1 = rigidBody1->getLinearVelocity();
|
|
Vector3 velocity2 = rigidBody2->getLinearVelocity();
|
|
double restitutionCoeff = rigidBody1->getRestitution() * rigidBody2->getRestitution();
|
|
double errorValue = restitutionCoeff * (normal.dot(velocity1) - normal.dot(velocity2)) + penetrationFactor * penetrationDepth;
|
|
|
|
// Assign the error value to the vector of error values
|
|
errorValues[noConstraint] = errorValue; // Error value for contact constraint
|
|
errorValues[noConstraint + 1] = 0.0; // Error value for friction constraint
|
|
errorValues[noConstraint + 2] = 0.0; // Error value for friction constraint
|
|
} |