reactphysics3d/src/mathematics/Transform.h
2015-02-15 21:56:45 +01:00

230 lines
8.6 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2015 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_TRANSFORM_H
#define REACTPHYSICS3D_TRANSFORM_H
// Libraries
#include "Matrix3x3.h"
#include "Vector3.h"
#include "Quaternion.h"
// ReactPhysiscs3D namespace
namespace reactphysics3d {
// Class Transform
/**
* This class represents a position and an orientation in 3D. It can
* also be seen as representing a translation and a rotation.
*/
class Transform {
private :
// -------------------- Attributes -------------------- //
/// Position
Vector3 mPosition;
/// Orientation
Quaternion mOrientation;
public :
// -------------------- Methods -------------------- //
/// Constructor
Transform();
/// Constructor
Transform(const Vector3& position, const Matrix3x3& orientation);
/// Constructor
Transform(const Vector3& position, const Quaternion& orientation);
/// Destructor
~Transform();
/// Copy-constructor
Transform(const Transform& transform);
/// Return the origin of the transform
const Vector3& getPosition() const;
/// Set the origin of the transform
void setPosition(const Vector3& position);
/// Return the orientation quaternion
const Quaternion& getOrientation() const;
/// Set the rotation quaternion
void setOrientation(const Quaternion& orientation);
/// Set the transform to the identity transform
void setToIdentity();
/// Set the transform from an OpenGL transform matrix
void setFromOpenGL(decimal* openglMatrix);
/// Get the OpenGL matrix of the transform
void getOpenGLMatrix(decimal* openglMatrix) const;
/// Return the inverse of the transform
Transform getInverse() const;
/// Return an interpolated transform
static Transform interpolateTransforms(const Transform& oldTransform,
const Transform& newTransform,
decimal interpolationFactor);
/// Return the identity transform
static Transform identity();
/// Return the transformed vector
Vector3 operator*(const Vector3& vector) const;
/// Operator of multiplication of a transform with another one
Transform operator*(const Transform& transform2) const;
/// Return true if the two transforms are equal
bool operator==(const Transform& transform2) const;
/// Return true if the two transforms are different
bool operator!=(const Transform& transform2) const;
/// Assignment operator
Transform& operator=(const Transform& transform);
};
// Return the position of the transform
inline const Vector3& Transform::getPosition() const {
return mPosition;
}
// Set the origin of the transform
inline void Transform::setPosition(const Vector3& position) {
mPosition = position;
}
// Return the rotation matrix
inline const Quaternion& Transform::getOrientation() const {
return mOrientation;
}
// Set the rotation matrix of the transform
inline void Transform::setOrientation(const Quaternion& orientation) {
mOrientation = orientation;
}
// Set the transform to the identity transform
inline void Transform::setToIdentity() {
mPosition = Vector3(0.0, 0.0, 0.0);
mOrientation = Quaternion::identity();
}
// Set the transform from an OpenGL transform matrix
inline void Transform::setFromOpenGL(decimal* openglMatrix) {
Matrix3x3 matrix(openglMatrix[0], openglMatrix[4], openglMatrix[8],
openglMatrix[1], openglMatrix[5], openglMatrix[9],
openglMatrix[2], openglMatrix[6], openglMatrix[10]);
mOrientation = Quaternion(matrix);
mPosition.setAllValues(openglMatrix[12], openglMatrix[13], openglMatrix[14]);
}
// Get the OpenGL matrix of the transform
inline void Transform::getOpenGLMatrix(decimal* openglMatrix) const {
const Matrix3x3& matrix = mOrientation.getMatrix();
openglMatrix[0] = matrix[0][0]; openglMatrix[1] = matrix[1][0];
openglMatrix[2] = matrix[2][0]; openglMatrix[3] = 0.0;
openglMatrix[4] = matrix[0][1]; openglMatrix[5] = matrix[1][1];
openglMatrix[6] = matrix[2][1]; openglMatrix[7] = 0.0;
openglMatrix[8] = matrix[0][2]; openglMatrix[9] = matrix[1][2];
openglMatrix[10] = matrix[2][2]; openglMatrix[11] = 0.0;
openglMatrix[12] = mPosition.x; openglMatrix[13] = mPosition.y;
openglMatrix[14] = mPosition.z; openglMatrix[15] = 1.0;
}
// Return the inverse of the transform
inline Transform Transform::getInverse() const {
const Quaternion& invQuaternion = mOrientation.getInverse();
Matrix3x3 invMatrix = invQuaternion.getMatrix();
return Transform(invMatrix * (-mPosition), invQuaternion);
}
// Return an interpolated transform
inline Transform Transform::interpolateTransforms(const Transform& oldTransform,
const Transform& newTransform,
decimal interpolationFactor) {
Vector3 interPosition = oldTransform.mPosition * (decimal(1.0) - interpolationFactor) +
newTransform.mPosition * interpolationFactor;
Quaternion interOrientation = Quaternion::slerp(oldTransform.mOrientation,
newTransform.mOrientation,
interpolationFactor);
return Transform(interPosition, interOrientation);
}
// Return the identity transform
inline Transform Transform::identity() {
return Transform(Vector3(0, 0, 0), Quaternion::identity());
}
// Return the transformed vector
inline Vector3 Transform::operator*(const Vector3& vector) const {
return (mOrientation.getMatrix() * vector) + mPosition;
}
// Operator of multiplication of a transform with another one
inline Transform Transform::operator*(const Transform& transform2) const {
return Transform(mPosition + mOrientation.getMatrix() * transform2.mPosition,
mOrientation * transform2.mOrientation);
}
// Return true if the two transforms are equal
inline bool Transform::operator==(const Transform& transform2) const {
return (mPosition == transform2.mPosition) && (mOrientation == transform2.mOrientation);
}
// Return true if the two transforms are different
inline bool Transform::operator!=(const Transform& transform2) const {
return !(*this == transform2);
}
// Assignment operator
inline Transform& Transform::operator=(const Transform& transform) {
if (&transform != this) {
mPosition = transform.mPosition;
mOrientation = transform.mOrientation;
}
return *this;
}
}
#endif