reactphysics3d/include/reactphysics3d/collision/shapes/ConcaveShape.h

182 lines
6.7 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2019 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_CONCAVE_SHAPE_H
#define REACTPHYSICS3D_CONCAVE_SHAPE_H
// Libraries
#include <reactphysics3d/collision/shapes/CollisionShape.h>
#include <reactphysics3d/collision/shapes/TriangleShape.h>
// ReactPhysics3D namespace
namespace reactphysics3d {
// Class TriangleCallback
/**
* This class is used to encapsulate a callback method for
* a single triangle of a ConcaveMesh.
*/
class TriangleCallback {
public:
/// Destructor
virtual ~TriangleCallback() = default;
/// Report a triangle
virtual void testTriangle(const Vector3* trianglePoints, const Vector3* verticesNormals, uint shapeId)=0;
};
// Class ConcaveShape
/**
* This abstract class represents a concave collision shape associated with a
* body that is used during the narrow-phase collision detection.
*/
class ConcaveShape : public CollisionShape {
protected :
// -------------------- Attributes -------------------- //
/// Raycast test type for the triangle (front, back, front-back)
TriangleRaycastSide mRaycastTestType;
/// Scale of the shape
Vector3 mScale;
// -------------------- Methods -------------------- //
/// Return true if a point is inside the collision shape
virtual bool testPointInside(const Vector3& localPoint, Collider* collider) const override;
public :
// -------------------- Methods -------------------- //
/// Constructor
ConcaveShape(CollisionShapeName name, MemoryAllocator& allocator, const Vector3& scaling);
/// Destructor
virtual ~ConcaveShape() override = default;
/// Deleted copy-constructor
ConcaveShape(const ConcaveShape& shape) = delete;
/// Deleted assignment operator
ConcaveShape& operator=(const ConcaveShape& shape) = delete;
/// Return the raycast test type (front, back, front-back)
TriangleRaycastSide getRaycastTestType() const;
// Set the raycast test type (front, back, front-back)
void setRaycastTestType(TriangleRaycastSide testType);
/// Return the scale of the shape
const Vector3& getScale() const;
/// Set the scale of the shape
void setScale(const Vector3& scale);
/// Return the local inertia tensor of the collision shape
virtual Vector3 getLocalInertiaTensor(decimal mass) const override;
/// Return true if the collision shape is convex, false if it is concave
virtual bool isConvex() const override;
/// Return true if the collision shape is a polyhedron
virtual bool isPolyhedron() const override;
/// Use a callback method on all triangles of the concave shape inside a given AABB
virtual void computeOverlappingTriangles(const AABB& localAABB, List<Vector3>& triangleVertices,
List<Vector3>& triangleVerticesNormals, List<uint>& shapeIds,
MemoryAllocator& allocator) const=0;
/// Compute and return the volume of the collision shape
virtual decimal getVolume() const override;
};
// Return true if the collision shape is convex, false if it is concave
inline bool ConcaveShape::isConvex() const {
return false;
}
// Return true if the collision shape is a polyhedron
inline bool ConcaveShape::isPolyhedron() const {
return true;
}
// Return true if a point is inside the collision shape
inline bool ConcaveShape::testPointInside(const Vector3& localPoint, Collider* collider) const {
return false;
}
// Return the raycast test type (front, back, front-back)
inline TriangleRaycastSide ConcaveShape::getRaycastTestType() const {
return mRaycastTestType;
}
// Set the raycast test type (front, back, front-back)
/**
* @param testType Raycast test type for the triangle (front, back, front-back)
*/
inline void ConcaveShape::setRaycastTestType(TriangleRaycastSide testType) {
mRaycastTestType = testType;
}
// Return the scale of the shape
inline const Vector3& ConcaveShape::getScale() const {
return mScale;
}
// Set the scale of the shape
/// Note that you might want to recompute the inertia tensor and center of mass of the body
/// after changing the scale of a collision shape
inline void ConcaveShape::setScale(const Vector3& scale) {
mScale = scale;
notifyColliderAboutChangedSize();
}
// Return the local inertia tensor of the shape
/**
* @param mass Mass to use to compute the inertia tensor of the collision shape
*/
inline Vector3 ConcaveShape::getLocalInertiaTensor(decimal mass) const {
// Default inertia tensor
// Note that this is not very realistic for a concave triangle mesh.
// However, in most cases, it will only be used static bodies and therefore,
// the inertia tensor is not used.
return Vector3(mass, mass, mass);
}
}
#endif