reactphysics3d/src/configuration.h
2018-04-30 22:15:53 +02:00

196 lines
8.8 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2018 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_CONFIGURATION_H
#define REACTPHYSICS3D_CONFIGURATION_H
// Libraries
#include <limits>
#include <cfloat>
#include <utility>
#include <sstream>
#include <string>
#include "decimal.h"
#include "containers/Pair.h"
// Windows platform
#if defined(WIN32) ||defined(_WIN32) || defined(_WIN64) ||defined(__WIN32__) || defined(__WINDOWS__)
#define WINDOWS_OS
#elif defined(__APPLE__) // Apple platform
#define APPLE_OS
#elif defined(__linux__) || defined(linux) || defined(__linux) // Linux platform
#define LINUX_OS
#endif
/// Namespace reactphysics3d
namespace reactphysics3d {
// ------------------- Type definitions ------------------- //
using uint = unsigned int;
using uchar = unsigned char;
using ushort = unsigned short;
using luint = long unsigned int;
using bodyindex = luint;
using bodyindexpair = Pair<bodyindex, bodyindex>;
using int8 = std::int8_t;
using uint8 = std::uint8_t;
using int16 = std::int16_t;
using uint16 = std::uint16_t;
using int32 = std::int32_t;
using uint32 = std::uint32_t;
// ------------------- Enumerations ------------------- //
/// Position correction technique used in the constraint solver (for joints).
/// BAUMGARTE_JOINTS : Faster but can be innacurate in some situations.
/// NON_LINEAR_GAUSS_SEIDEL : Slower but more precise. This is the option used by default.
enum class JointsPositionCorrectionTechnique {BAUMGARTE_JOINTS, NON_LINEAR_GAUSS_SEIDEL};
/// Position correction technique used in the contact solver (for contacts)
/// BAUMGARTE_CONTACTS : Faster but can be innacurate and can lead to unexpected bounciness
/// in some situations (due to error correction factor being added to
/// the bodies momentum).
/// SPLIT_IMPULSES : A bit slower but the error correction factor is not added to the
/// bodies momentum. This is the option used by default.
enum class ContactsPositionCorrectionTechnique {BAUMGARTE_CONTACTS, SPLIT_IMPULSES};
// ------------------- Constants ------------------- //
/// Smallest decimal value (negative)
const decimal DECIMAL_SMALLEST = - std::numeric_limits<decimal>::max();
/// Maximum decimal value
const decimal DECIMAL_LARGEST = std::numeric_limits<decimal>::max();
/// Machine epsilon
const decimal MACHINE_EPSILON = std::numeric_limits<decimal>::epsilon();
/// Pi constant
constexpr decimal PI = decimal(3.14159265);
/// 2*Pi constant
constexpr decimal PI_TIMES_2 = decimal(6.28318530);
/// In the broad-phase collision detection (dynamic AABB tree), the AABBs are
/// inflated with a constant gap to allow the collision shape to move a little bit
/// without triggering a large modification of the tree which can be costly
constexpr decimal DYNAMIC_TREE_AABB_GAP = decimal(0.1);
/// In the broad-phase collision detection (dynamic AABB tree), the AABBs are
/// also inflated in direction of the linear motion of the body by mutliplying the
/// followin constant with the linear velocity and the elapsed time between two frames.
constexpr decimal DYNAMIC_TREE_AABB_LIN_GAP_MULTIPLIER = decimal(1.7);
/// Current version of ReactPhysics3D
const std::string RP3D_VERSION = std::string("0.7.0");
/// Structure WorldSettings
/**
* This class is used to describe some settings of a physics world.
*/
struct WorldSettings {
/// Name of the world
std::string worldName = "";
/// Distance threshold for two contact points for a valid persistent contact (in meters)
decimal persistentContactDistanceThreshold = decimal(0.03);
/// Default friction coefficient for a rigid body
decimal defaultFrictionCoefficient = decimal(0.3);
/// Default bounciness factor for a rigid body
decimal defaultBounciness = decimal(0.5);
/// Velocity threshold for contact velocity restitution
decimal restitutionVelocityThreshold = decimal(1.0);
/// Default rolling resistance
decimal defaultRollingRestistance = decimal(0.0);
/// True if the sleeping technique is enabled
bool isSleepingEnabled = true;
/// Number of iterations when solving the velocity constraints of the Sequential Impulse technique
uint defaultVelocitySolverNbIterations = 10;
/// Number of iterations when solving the position constraints of the Sequential Impulse technique
uint defaultPositionSolverNbIterations = 5;
/// Time (in seconds) that a body must stay still to be considered sleeping
float defaultTimeBeforeSleep = 1.0f;
/// A body with a linear velocity smaller than the sleep linear velocity (in m/s)
/// might enter sleeping mode.
decimal defaultSleepLinearVelocity = decimal(0.02);
/// A body with angular velocity smaller than the sleep angular velocity (in rad/s)
/// might enter sleeping mode
decimal defaultSleepAngularVelocity = decimal(3.0) * (PI / decimal(180.0));
/// Maximum number of contact manifolds in an overlapping pair that involves two
/// convex collision shapes.
int nbMaxContactManifoldsConvexShape = 1;
/// Maximum number of contact manifolds in an overlapping pair that involves at
/// least one concave collision shape.
int nbMaxContactManifoldsConcaveShape = 3;
/// This is used to test if two contact manifold are similar (same contact normal) in order to
/// merge them. If the cosine of the angle between the normals of the two manifold are larger
/// than the value bellow, the manifold are considered to be similar.
decimal cosAngleSimilarContactManifold = decimal(0.95);
/// Return a string with the world settings
std::string to_string() const {
std::stringstream ss;
ss << "worldName=" << worldName << std::endl;
ss << "persistentContactDistanceThreshold=" << persistentContactDistanceThreshold << std::endl;
ss << "defaultFrictionCoefficient=" << defaultFrictionCoefficient << std::endl;
ss << "defaultBounciness=" << defaultBounciness << std::endl;
ss << "restitutionVelocityThreshold=" << restitutionVelocityThreshold << std::endl;
ss << "defaultRollingRestistance=" << defaultRollingRestistance << std::endl;
ss << "isSleepingEnabled=" << isSleepingEnabled << std::endl;
ss << "defaultVelocitySolverNbIterations=" << defaultVelocitySolverNbIterations << std::endl;
ss << "defaultPositionSolverNbIterations=" << defaultPositionSolverNbIterations << std::endl;
ss << "defaultTimeBeforeSleep=" << defaultTimeBeforeSleep << std::endl;
ss << "defaultSleepLinearVelocity=" << defaultSleepLinearVelocity << std::endl;
ss << "defaultSleepAngularVelocity=" << defaultSleepAngularVelocity << std::endl;
ss << "nbMaxContactManifoldsConvexShape=" << nbMaxContactManifoldsConvexShape << std::endl;
ss << "nbMaxContactManifoldsConcaveShape=" << nbMaxContactManifoldsConcaveShape << std::endl;
ss << "cosAngleSimilarContactManifold=" << cosAngleSimilarContactManifold << std::endl;
return ss.str();
}
};
}
#endif