reactphysics3d/src/engine/PhysicsWorld.cpp
2020-06-14 23:18:13 +02:00

1112 lines
45 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2020 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include <reactphysics3d/engine/PhysicsCommon.h>
#include <reactphysics3d/engine/PhysicsWorld.h>
#include <reactphysics3d/constraint/BallAndSocketJoint.h>
#include <reactphysics3d/constraint/SliderJoint.h>
#include <reactphysics3d/constraint/HingeJoint.h>
#include <reactphysics3d/constraint/FixedJoint.h>
#include <reactphysics3d/utils/Profiler.h>
#include <reactphysics3d/engine/EventListener.h>
#include <reactphysics3d/engine/Island.h>
#include <reactphysics3d/collision/ContactManifold.h>
#include <reactphysics3d/containers/Stack.h>
// Namespaces
using namespace reactphysics3d;
using namespace std;
// Static initializations
uint PhysicsWorld::mNbWorlds = 0;
// Constructor
/**
* @param gravity Gravity vector in the world (in meters per second squared)
* @param worldSettings The settings of the world
* @param profiler Pointer to the profiler
*/
PhysicsWorld::PhysicsWorld(MemoryManager& memoryManager, const WorldSettings& worldSettings, Profiler* profiler)
: mMemoryManager(memoryManager), mConfig(worldSettings), mEntityManager(mMemoryManager.getHeapAllocator()), mDebugRenderer(mMemoryManager.getHeapAllocator()),
mCollisionBodyComponents(mMemoryManager.getHeapAllocator()), mRigidBodyComponents(mMemoryManager.getHeapAllocator()),
mTransformComponents(mMemoryManager.getHeapAllocator()), mCollidersComponents(mMemoryManager.getHeapAllocator()),
mJointsComponents(mMemoryManager.getHeapAllocator()), mBallAndSocketJointsComponents(mMemoryManager.getHeapAllocator()),
mFixedJointsComponents(mMemoryManager.getHeapAllocator()), mHingeJointsComponents(mMemoryManager.getHeapAllocator()),
mSliderJointsComponents(mMemoryManager.getHeapAllocator()), mCollisionDetection(this, mCollidersComponents, mTransformComponents, mCollisionBodyComponents, mRigidBodyComponents,
mMemoryManager),
mCollisionBodies(mMemoryManager.getHeapAllocator()), mEventListener(nullptr),
mName(worldSettings.worldName), mIslands(mMemoryManager.getSingleFrameAllocator()),
mContactSolverSystem(mMemoryManager, *this, mIslands, mCollisionBodyComponents, mRigidBodyComponents,
mCollidersComponents, mConfig.restitutionVelocityThreshold),
mConstraintSolverSystem(*this, mIslands, mRigidBodyComponents, mTransformComponents, mJointsComponents,
mBallAndSocketJointsComponents, mFixedJointsComponents, mHingeJointsComponents,
mSliderJointsComponents),
mDynamicsSystem(*this, mCollisionBodyComponents, mRigidBodyComponents, mTransformComponents, mCollidersComponents, mIsGravityEnabled, mConfig.gravity),
mNbVelocitySolverIterations(mConfig.defaultVelocitySolverNbIterations),
mNbPositionSolverIterations(mConfig.defaultPositionSolverNbIterations),
mIsSleepingEnabled(mConfig.isSleepingEnabled), mRigidBodies(mMemoryManager.getPoolAllocator()),
mIsGravityEnabled(true), mSleepLinearVelocity(mConfig.defaultSleepLinearVelocity),
mSleepAngularVelocity(mConfig.defaultSleepAngularVelocity), mTimeBeforeSleep(mConfig.defaultTimeBeforeSleep), mCurrentJointId(0) {
// Automatically generate a name for the world
if (mName == "") {
std::stringstream ss;
ss << "world";
if (mNbWorlds > 0) {
ss << mNbWorlds;
}
mName = ss.str();
}
#ifdef IS_RP3D_PROFILING_ENABLED
assert(profiler != nullptr);
mProfiler = profiler;
// Set the profiler
mConstraintSolverSystem.setProfiler(mProfiler);
mContactSolverSystem.setProfiler(mProfiler);
mDynamicsSystem.setProfiler(mProfiler);
mCollisionDetection.setProfiler(mProfiler);
#endif
mNbWorlds++;
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::World,
"Physics World: Physics world " + mName + " has been created", __FILE__, __LINE__);
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::World,
"Physics World: Initial world settings: " + worldSettings.to_string(), __FILE__, __LINE__);
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::World,
"Physics World: Physics world " + mName + " has been created", __FILE__, __LINE__);
}
// Destructor
PhysicsWorld::~PhysicsWorld() {
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::World,
"Physics World: Physics world " + mName + " has been destroyed", __FILE__, __LINE__);
// Destroy all the collision bodies that have not been removed
for (int i=mCollisionBodies.size() - 1 ; i >= 0; i--) {
destroyCollisionBody(mCollisionBodies[i]);
}
#ifdef IS_RP3D_PROFILING_ENABLED
// Print the profiling report into the destinations
mProfiler->printReport();
#endif
// Destroy all the joints that have not been removed
for (uint32 i=0; i < mJointsComponents.getNbComponents(); i++) {
destroyJoint(mJointsComponents.mJoints[i]);
}
// Destroy all the rigid bodies that have not been removed
for (int i=mRigidBodies.size() - 1; i >= 0; i--) {
destroyRigidBody(mRigidBodies[i]);
}
assert(mJointsComponents.getNbComponents() == 0);
assert(mRigidBodies.size() == 0);
assert(mCollisionBodies.size() == 0);
assert(mCollisionBodyComponents.getNbComponents() == 0);
assert(mTransformComponents.getNbComponents() == 0);
assert(mCollidersComponents.getNbComponents() == 0);
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::World,
"Physics World: Physics world " + mName + " has been destroyed", __FILE__, __LINE__);
}
// Create a collision body and add it to the world
/**
* @param transform Transformation mapping the local-space of the body to world-space
* @return A pointer to the body that has been created in the world
*/
CollisionBody* PhysicsWorld::createCollisionBody(const Transform& transform) {
// Create a new entity for the body
Entity entity = mEntityManager.createEntity();
// Check that the transform is valid
if (!transform.isValid()) {
RP3D_LOG(mConfig.worldName, Logger::Level::Error, Logger::Category::Body,
"Error when creating a collision body: the init transform is not valid", __FILE__, __LINE__);
}
assert(transform.isValid());
mTransformComponents.addComponent(entity, false, TransformComponents::TransformComponent(transform));
// Create the collision body
CollisionBody* collisionBody = new (mMemoryManager.allocate(MemoryManager::AllocationType::Pool,
sizeof(CollisionBody)))
CollisionBody(*this, entity);
assert(collisionBody != nullptr);
// Add the components
CollisionBodyComponents::CollisionBodyComponent bodyComponent(collisionBody);
mCollisionBodyComponents.addComponent(entity, false, bodyComponent);
// Add the collision body to the world
mCollisionBodies.add(collisionBody);
#ifdef IS_RP3D_PROFILING_ENABLED
collisionBody->setProfiler(mProfiler);
#endif
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::Body,
"Body " + std::to_string(entity.id) + ": New collision body created", __FILE__, __LINE__);
// Return the pointer to the rigid body
return collisionBody;
}
// Destroy a collision body
/**
* @param collisionBody Pointer to the body to destroy
*/
void PhysicsWorld::destroyCollisionBody(CollisionBody* collisionBody) {
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::Body,
"Body " + std::to_string(collisionBody->getEntity().id) + ": collision body destroyed", __FILE__, __LINE__);
// Remove all the collision shapes of the body
collisionBody->removeAllColliders();
mCollisionBodyComponents.removeComponent(collisionBody->getEntity());
mTransformComponents.removeComponent(collisionBody->getEntity());
mEntityManager.destroyEntity(collisionBody->getEntity());
// Call the destructor of the collision body
collisionBody->~CollisionBody();
// Remove the collision body from the list of bodies
mCollisionBodies.remove(collisionBody);
// Free the object from the memory allocator
mMemoryManager.release(MemoryManager::AllocationType::Pool, collisionBody, sizeof(CollisionBody));
}
// Notify the world if a body is disabled (sleeping) or not
void PhysicsWorld::setBodyDisabled(Entity bodyEntity, bool isDisabled) {
if (isDisabled == mCollisionBodyComponents.getIsEntityDisabled(bodyEntity)) return;
// Notify all the components
mCollisionBodyComponents.setIsEntityDisabled(bodyEntity, isDisabled);
mTransformComponents.setIsEntityDisabled(bodyEntity, isDisabled);
if (mRigidBodyComponents.hasComponent(bodyEntity)) {
mRigidBodyComponents.setIsEntityDisabled(bodyEntity, isDisabled);
}
// For each collider of the body
const List<Entity>& collidersEntities = mCollisionBodyComponents.getColliders(bodyEntity);
for (uint i=0; i < collidersEntities.size(); i++) {
mCollidersComponents.setIsEntityDisabled(collidersEntities[i], isDisabled);
}
// Disable the joints of the body if necessary
if (mRigidBodyComponents.hasComponent(bodyEntity)) {
// For each joint of the body
const List<Entity>& joints = mRigidBodyComponents.getJoints(bodyEntity);
for(uint32 i=0; i < joints.size(); i++) {
const Entity body1Entity = mJointsComponents.getBody1Entity(joints[i]);
const Entity body2Entity = mJointsComponents.getBody2Entity(joints[i]);
// If both bodies of the joint are disabled
if (mRigidBodyComponents.getIsEntityDisabled(body1Entity) &&
mRigidBodyComponents.getIsEntityDisabled(body2Entity)) {
// We disable the joint
setJointDisabled(joints[i], true);
}
else {
// Enable the joint
setJointDisabled(joints[i], false);
}
}
}
}
// Notify the world whether a joint is disabled or not
void PhysicsWorld::setJointDisabled(Entity jointEntity, bool isDisabled) {
if (isDisabled == mJointsComponents.getIsEntityDisabled(jointEntity)) return;
mJointsComponents.setIsEntityDisabled(jointEntity, isDisabled);
if (mBallAndSocketJointsComponents.hasComponent(jointEntity)) {
mBallAndSocketJointsComponents.setIsEntityDisabled(jointEntity, isDisabled);
}
if (mFixedJointsComponents.hasComponent(jointEntity)) {
mFixedJointsComponents.setIsEntityDisabled(jointEntity, isDisabled);
}
if (mHingeJointsComponents.hasComponent(jointEntity)) {
mHingeJointsComponents.setIsEntityDisabled(jointEntity, isDisabled);
}
if (mSliderJointsComponents.hasComponent(jointEntity)) {
mSliderJointsComponents.setIsEntityDisabled(jointEntity, isDisabled);
}
}
// Return true if two bodies overlap
/// Use this method if you are not interested in contacts but if you simply want to know
/// if the two bodies overlap. If you want to get the contacts, you need to use the
/// testCollision() method instead.
/**
* @param body1 Pointer to the first body
* @param body2 Pointer to a second body
* @return True if the two bodies overlap
*/
bool PhysicsWorld::testOverlap(CollisionBody* body1, CollisionBody* body2) {
return mCollisionDetection.testOverlap(body1, body2);
}
// Return the current world-space AABB of given collider
/**
* @param collider Pointer to a collider
* @return The AAABB of the collider in world-space
*/
AABB PhysicsWorld::getWorldAABB(const Collider* collider) const {
if (collider->getBroadPhaseId() == -1) {
return AABB();
}
return mCollisionDetection.getWorldAABB(collider);
}
// Update the physics simulation
/**
* @param timeStep The amount of time to step the simulation by (in seconds)
*/
void PhysicsWorld::update(decimal timeStep) {
#ifdef IS_RP3D_PROFILING_ENABLED
// Increment the frame counter of the profiler
mProfiler->incrementFrameCounter();
#endif
RP3D_PROFILE("PhysicsWorld::update()", mProfiler);
// Reset the debug renderer
if (mIsDebugRenderingEnabled) {
mDebugRenderer.reset();
}
// Compute the collision detection
mCollisionDetection.computeCollisionDetection();
// Create the islands
createIslands();
// Report the contacts to the user
mCollisionDetection.reportContactsAndTriggers();
// Disable the joints for pair of sleeping bodies
disableJointsOfSleepingBodies();
// Integrate the velocities
mDynamicsSystem.integrateRigidBodiesVelocities(timeStep);
// Solve the contacts and constraints
solveContactsAndConstraints(timeStep);
// Integrate the position and orientation of each body
mDynamicsSystem.integrateRigidBodiesPositions(timeStep, mContactSolverSystem.isSplitImpulseActive());
// Solve the position correction for constraints
solvePositionCorrection();
// Update the state (positions and velocities) of the bodies
mDynamicsSystem.updateBodiesState();
// Update the colliders components
mCollisionDetection.updateColliders(timeStep);
if (mIsSleepingEnabled) updateSleepingBodies(timeStep);
// Reset the external force and torque applied to the bodies
mDynamicsSystem.resetBodiesForceAndTorque();
// Reset the islands
mIslands.clear();
// Generate debug rendering primitives (if enabled)
if (mIsDebugRenderingEnabled) {
mDebugRenderer.computeDebugRenderingPrimitives(*this);
}
// Reset the single frame memory allocator
mMemoryManager.resetFrameAllocator();
}
// Solve the contacts and constraints
void PhysicsWorld::solveContactsAndConstraints(decimal timeStep) {
RP3D_PROFILE("PhysicsWorld::solveContactsAndConstraints()", mProfiler);
// ---------- Solve velocity constraints for joints and contacts ---------- //
// Initialize the contact solver
mContactSolverSystem.init(mCollisionDetection.mCurrentContactManifolds, mCollisionDetection.mCurrentContactPoints, timeStep);
// Initialize the constraint solver
mConstraintSolverSystem.initialize(timeStep);
// For each iteration of the velocity solver
for (uint i=0; i<mNbVelocitySolverIterations; i++) {
mConstraintSolverSystem.solveVelocityConstraints();
mContactSolverSystem.solve();
}
mContactSolverSystem.storeImpulses();
// Reset the contact solver
mContactSolverSystem.reset();
}
// Solve the position error correction of the constraints
void PhysicsWorld::solvePositionCorrection() {
RP3D_PROFILE("PhysicsWorld::solvePositionCorrection()", mProfiler);
// ---------- Solve the position error correction for the constraints ---------- //
// For each iteration of the position (error correction) solver
for (uint i=0; i<mNbPositionSolverIterations; i++) {
// Solve the position constraints
mConstraintSolverSystem.solvePositionConstraints();
}
}
// Disable the joints for pair of sleeping bodies
void PhysicsWorld::disableJointsOfSleepingBodies() {
// For each joint
for (uint32 i=0; i < mJointsComponents.getNbEnabledComponents(); i++) {
Entity body1 = mJointsComponents.mBody1Entities[i];
Entity body2 = mJointsComponents.mBody2Entities[i];
// If both bodies of the joint are disabled
if (mCollisionBodyComponents.getIsEntityDisabled(body1) && mCollisionBodyComponents.getIsEntityDisabled(body2)) {
// Disable the joint
setJointDisabled(mJointsComponents.mJointEntities[i], true);
}
}
}
// Create a rigid body into the physics world
/**
* @param transform Transformation from body local-space to world-space
* @return A pointer to the body that has been created in the world
*/
RigidBody* PhysicsWorld::createRigidBody(const Transform& transform) {
// Create a new entity for the body
Entity entity = mEntityManager.createEntity();
// Check that the transform is valid
if (!transform.isValid()) {
RP3D_LOG(mConfig.worldName, Logger::Level::Error, Logger::Category::Body,
"Error when creating a rigid body: the init transform is not valid", __FILE__, __LINE__);
}
assert(transform.isValid());
mTransformComponents.addComponent(entity, false, TransformComponents::TransformComponent(transform));
// Create the rigid body
RigidBody* rigidBody = new (mMemoryManager.allocate(MemoryManager::AllocationType::Pool,
sizeof(RigidBody))) RigidBody(*this, entity);
assert(rigidBody != nullptr);
CollisionBodyComponents::CollisionBodyComponent bodyComponent(rigidBody);
mCollisionBodyComponents.addComponent(entity, false, bodyComponent);
RigidBodyComponents::RigidBodyComponent rigidBodyComponent(rigidBody, BodyType::DYNAMIC, transform.getPosition());
mRigidBodyComponents.addComponent(entity, false, rigidBodyComponent);
// Compute the inverse mass
mRigidBodyComponents.setMassInverse(entity, decimal(1.0) / mRigidBodyComponents.getMass(entity));
// Add the rigid body to the physics world
mRigidBodies.add(rigidBody);
#ifdef IS_RP3D_PROFILING_ENABLED
rigidBody->setProfiler(mProfiler);
#endif
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::Body,
"Body " + std::to_string(entity.id) + ": New collision body created", __FILE__, __LINE__);
// Return the pointer to the rigid body
return rigidBody;
}
// Destroy a rigid body and all the joints which it belongs
/**
* @param rigidBody Pointer to the body you want to destroy
*/
void PhysicsWorld::destroyRigidBody(RigidBody* rigidBody) {
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::Body,
"Body " + std::to_string(rigidBody->getEntity().id) + ": rigid body destroyed", __FILE__, __LINE__);
// Remove all the collision shapes of the body
rigidBody->removeAllColliders();
// Destroy all the joints in which the rigid body to be destroyed is involved
const List<Entity>& joints = mRigidBodyComponents.getJoints(rigidBody->getEntity());
for (uint32 i=0; i < joints.size(); i++) {
destroyJoint(mJointsComponents.getJoint(joints[i]));
}
// Destroy the corresponding entity and its components
mCollisionBodyComponents.removeComponent(rigidBody->getEntity());
mRigidBodyComponents.removeComponent(rigidBody->getEntity());
mTransformComponents.removeComponent(rigidBody->getEntity());
mEntityManager.destroyEntity(rigidBody->getEntity());
// Call the destructor of the rigid body
rigidBody->~RigidBody();
// Remove the rigid body from the list of rigid bodies
mRigidBodies.remove(rigidBody);
// Free the object from the memory allocator
mMemoryManager.release(MemoryManager::AllocationType::Pool, rigidBody, sizeof(RigidBody));
}
// Create a joint between two bodies in the world and return a pointer to the new joint
/**
* @param jointInfo The information that is necessary to create the joint
* @return A pointer to the joint that has been created in the world
*/
Joint* PhysicsWorld::createJoint(const JointInfo& jointInfo) {
// Create a new entity for the joint
Entity entity = mEntityManager.createEntity();
Joint* newJoint = nullptr;
const bool isJointDisabled = mRigidBodyComponents.getIsEntityDisabled(jointInfo.body1->getEntity()) &&
mRigidBodyComponents.getIsEntityDisabled(jointInfo.body2->getEntity());
// Allocate memory to create the new joint
switch(jointInfo.type) {
// Ball-and-Socket joint
case JointType::BALLSOCKETJOINT:
{
// Create a BallAndSocketJoint component
BallAndSocketJointComponents::BallAndSocketJointComponent ballAndSocketJointComponent;
mBallAndSocketJointsComponents.addComponent(entity, isJointDisabled, ballAndSocketJointComponent);
void* allocatedMemory = mMemoryManager.allocate(MemoryManager::AllocationType::Pool,
sizeof(BallAndSocketJoint));
const BallAndSocketJointInfo& info = static_cast<const BallAndSocketJointInfo&>(jointInfo);
BallAndSocketJoint* joint = new (allocatedMemory) BallAndSocketJoint(entity, *this, info);
newJoint = joint;
mBallAndSocketJointsComponents.setJoint(entity, joint);
break;
}
// Slider joint
case JointType::SLIDERJOINT:
{
const SliderJointInfo& info = static_cast<const SliderJointInfo&>(jointInfo);
// Create a SliderJoint component
SliderJointComponents::SliderJointComponent sliderJointComponent(info.isLimitEnabled, info.isMotorEnabled,
info.minTranslationLimit, info.maxTranslationLimit,
info.motorSpeed, info.maxMotorForce);
mSliderJointsComponents.addComponent(entity, isJointDisabled, sliderJointComponent);
void* allocatedMemory = mMemoryManager.allocate(MemoryManager::AllocationType::Pool, sizeof(SliderJoint));
SliderJoint* joint = new (allocatedMemory) SliderJoint(entity, *this, info);
newJoint = joint;
mSliderJointsComponents.setJoint(entity, joint);
break;
}
// Hinge joint
case JointType::HINGEJOINT:
{
const HingeJointInfo& info = static_cast<const HingeJointInfo&>(jointInfo);
// Create a HingeJoint component
HingeJointComponents::HingeJointComponent hingeJointComponent(info.isLimitEnabled, info.isMotorEnabled,
info.minAngleLimit, info.maxAngleLimit,
info.motorSpeed, info.maxMotorTorque);
mHingeJointsComponents.addComponent(entity, isJointDisabled, hingeJointComponent);
void* allocatedMemory = mMemoryManager.allocate(MemoryManager::AllocationType::Pool,
sizeof(HingeJoint));
HingeJoint* joint = new (allocatedMemory) HingeJoint(entity, *this, info);
newJoint = joint;
mHingeJointsComponents.setJoint(entity, joint);
break;
}
// Fixed joint
case JointType::FIXEDJOINT:
{
// Create a BallAndSocketJoint component
FixedJointComponents::FixedJointComponent fixedJointComponent;
mFixedJointsComponents.addComponent(entity, isJointDisabled, fixedJointComponent);
void* allocatedMemory = mMemoryManager.allocate(MemoryManager::AllocationType::Pool,
sizeof(FixedJoint));
const FixedJointInfo& info = static_cast<const FixedJointInfo&>(jointInfo);
FixedJoint* joint = new (allocatedMemory) FixedJoint(entity, *this, info);
newJoint = joint;
mFixedJointsComponents.setJoint(entity, joint);
break;
}
default:
{
assert(false);
return nullptr;
}
}
JointComponents::JointComponent jointComponent(jointInfo.body1->getEntity(), jointInfo.body2->getEntity(), newJoint, jointInfo.type,
jointInfo.positionCorrectionTechnique, jointInfo.isCollisionEnabled);
mJointsComponents.addComponent(entity, isJointDisabled, jointComponent);
// If the collision between the two bodies of the constraint is disabled
if (!jointInfo.isCollisionEnabled) {
// Add the pair of bodies in the set of body pairs that cannot collide with each other
mCollisionDetection.addNoCollisionPair(jointInfo.body1->getEntity(), jointInfo.body2->getEntity());
}
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::Joint,
"Joint " + std::to_string(newJoint->getEntity().id) + ": New joint created", __FILE__, __LINE__);
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::Joint,
"Joint " + std::to_string(newJoint->getEntity().id) + ": " + newJoint->to_string(), __FILE__, __LINE__);
// Add the joint into the joint list of the bodies involved in the joint
addJointToBodies(jointInfo.body1->getEntity(), jointInfo.body2->getEntity(), entity);
// Return the pointer to the created joint
return newJoint;
}
// Destroy a joint
/**
* @param joint Pointer to the joint you want to destroy
*/
void PhysicsWorld::destroyJoint(Joint* joint) {
assert(joint != nullptr);
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::Joint,
"Joint " + std::to_string(joint->getEntity().id) + ": joint destroyed", __FILE__, __LINE__);
// If the collision between the two bodies of the constraint was disabled
if (!joint->isCollisionEnabled()) {
// Remove the pair of bodies from the set of body pairs that cannot collide with each other
mCollisionDetection.removeNoCollisionPair(joint->getBody1()->getEntity(), joint->getBody2()->getEntity());
}
RigidBody* body1 = joint->getBody1();
RigidBody* body2 = joint->getBody2();
// Wake up the two bodies of the joint
body1->setIsSleeping(false);
body2->setIsSleeping(false);
// Remove the joint from the joint list of the bodies involved in the joint
mRigidBodyComponents.removeJointFromBody(body1->getEntity(), joint->getEntity());
mRigidBodyComponents.removeJointFromBody(body2->getEntity(), joint->getEntity());
size_t nbBytes = joint->getSizeInBytes();
Entity jointEntity = joint->getEntity();
// Destroy the corresponding entity and its components
mJointsComponents.removeComponent(jointEntity);
if (mBallAndSocketJointsComponents.hasComponent(jointEntity)) {
mBallAndSocketJointsComponents.removeComponent(jointEntity);
}
if (mFixedJointsComponents.hasComponent(jointEntity)) {
mFixedJointsComponents.removeComponent(jointEntity);
}
if (mHingeJointsComponents.hasComponent(jointEntity)) {
mHingeJointsComponents.removeComponent(jointEntity);
}
if (mSliderJointsComponents.hasComponent(jointEntity)) {
mSliderJointsComponents.removeComponent(jointEntity);
}
mEntityManager.destroyEntity(jointEntity);
// Call the destructor of the joint
joint->~Joint();
// Release the allocated memory
mMemoryManager.release(MemoryManager::AllocationType::Pool, joint, nbBytes);
}
// Set the number of iterations for the velocity constraint solver
/**
* @param nbIterations Number of iterations for the velocity solver
*/
void PhysicsWorld::setNbIterationsVelocitySolver(uint nbIterations) {
mNbVelocitySolverIterations = nbIterations;
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::World,
"Physics World: Set nb iterations velocity solver to " + std::to_string(nbIterations), __FILE__, __LINE__);
}
// Add the joint to the list of joints of the two bodies involved in the joint
void PhysicsWorld::addJointToBodies(Entity body1, Entity body2, Entity joint) {
mRigidBodyComponents.addJointToBody(body1, joint);
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::Body,
"Body " + std::to_string(body1.id) + ": Joint " + std::to_string(joint.id) + " added to body", __FILE__, __LINE__);
mRigidBodyComponents.addJointToBody(body2, joint);
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::Body,
"Body " + std::to_string(body2.id) + ": Joint " + std::to_string(joint.id) + " added to body", __FILE__, __LINE__);
}
// Compute the islands using potential contacts and joints
/// We compute the islands before creating the actual contacts here because we want all
/// the contact manifolds and contact points of the same island
/// to be packed together into linear arrays of manifolds and contacts for better caching.
/// An island is an isolated group of rigid bodies that have constraints (joints or contacts)
/// between each other. This method computes the islands at each time step as follows: For each
/// awake rigid body, we run a Depth First Search (DFS) through the constraint graph of that body
/// (graph where nodes are the bodies and where the edges are the constraints between the bodies) to
/// find all the bodies that are connected with it (the bodies that share joints or contacts with
/// it). Then, we create an island with this group of connected bodies.
void PhysicsWorld::createIslands() {
RP3D_PROFILE("PhysicsWorld::createIslands()", mProfiler);
// Reset all the isAlreadyInIsland variables of bodies and joints
for (uint b=0; b < mRigidBodyComponents.getNbComponents(); b++) {
mRigidBodyComponents.mIsAlreadyInIsland[b] = false;
}
for (uint32 i=0; i < mJointsComponents.getNbComponents(); i++) {
mJointsComponents.mIsAlreadyInIsland[i] = false;
}
// Create a stack for the bodies to visit during the Depth First Search
Stack<Entity> bodyEntityIndicesToVisit(mMemoryManager.getSingleFrameAllocator());
uint nbTotalManifolds = 0;
// For each rigid body component
for (uint b=0; b < mRigidBodyComponents.getNbEnabledComponents(); b++) {
// If the body has already been added to an island, we go to the next body
if (mRigidBodyComponents.mIsAlreadyInIsland[b]) continue;
// If the body is static, we go to the next body
if (mRigidBodyComponents.mBodyTypes[b] == BodyType::STATIC) continue;
// Reset the stack of bodies to visit
bodyEntityIndicesToVisit.clear();
// Add the body into the stack of bodies to visit
mRigidBodyComponents.mIsAlreadyInIsland[b] = true;
bodyEntityIndicesToVisit.push(mRigidBodyComponents.mBodiesEntities[b]);
// Create the new island
uint32 islandIndex = mIslands.addIsland(nbTotalManifolds);
// While there are still some bodies to visit in the stack
while (bodyEntityIndicesToVisit.size() > 0) {
// Get the next body to visit from the stack
const Entity bodyToVisitEntity = bodyEntityIndicesToVisit.pop();
// Add the body into the island
mIslands.bodyEntities[islandIndex].add(bodyToVisitEntity);
RigidBody* rigidBodyToVisit = static_cast<RigidBody*>(mCollisionBodyComponents.getBody(bodyToVisitEntity));
// Awake the body if it is sleeping
rigidBodyToVisit->setIsSleeping(false);
// If the current body is static, we do not want to perform the DFS search across that body
if (rigidBodyToVisit->getType() == BodyType::STATIC) continue;
// If the body is involved in contacts with other bodies
auto itBodyContactPairs = mCollisionDetection.mMapBodyToContactPairs.find(bodyToVisitEntity);
if (itBodyContactPairs != mCollisionDetection.mMapBodyToContactPairs.end()) {
// For each contact pair in which the current body is involded
List<uint>& contactPairs = itBodyContactPairs->second;
for (uint p=0; p < contactPairs.size(); p++) {
ContactPair& pair = (*mCollisionDetection.mCurrentContactPairs)[contactPairs[p]];
// Check if the current contact pair has already been added into an island
if (pair.isAlreadyInIsland) continue;
// If the colliding body is a RigidBody (and not a CollisionBody) and is not a trigger
if (mRigidBodyComponents.hasComponent(pair.body1Entity) && mRigidBodyComponents.hasComponent(pair.body2Entity)
&& !mCollidersComponents.getIsTrigger(pair.collider1Entity) && !mCollidersComponents.getIsTrigger(pair.collider2Entity)) {
assert(pair.potentialContactManifoldsIndices.size() > 0);
nbTotalManifolds += pair.potentialContactManifoldsIndices.size();
// Add the contact manifold into the island
mIslands.nbContactManifolds[islandIndex] += pair.potentialContactManifoldsIndices.size();
pair.isAlreadyInIsland = true;
const Entity otherBodyEntity = pair.body1Entity == bodyToVisitEntity ? pair.body2Entity : pair.body1Entity;
// Check if the other body has already been added to the island
if (mRigidBodyComponents.getIsAlreadyInIsland(otherBodyEntity)) continue;
// Insert the other body into the stack of bodies to visit
bodyEntityIndicesToVisit.push(otherBodyEntity);
mRigidBodyComponents.setIsAlreadyInIsland(otherBodyEntity, true);
}
else {
// Add the contact pair index in the list of contact pairs that won't be part of islands
pair.isAlreadyInIsland = true;
}
}
}
// For each joint in which the current body is involved
const List<Entity>& joints = mRigidBodyComponents.getJoints(rigidBodyToVisit->getEntity());
for (uint32 i=0; i < joints.size(); i++) {
// Check if the current joint has already been added into an island
if (mJointsComponents.getIsAlreadyInIsland(joints[i])) continue;
// Add the joint into the island
mJointsComponents.setIsAlreadyInIsland(joints[i], true);
const Entity body1Entity = mJointsComponents.getBody1Entity(joints[i]);
const Entity body2Entity = mJointsComponents.getBody2Entity(joints[i]);
const Entity otherBodyEntity = body1Entity == bodyToVisitEntity ? body2Entity : body1Entity;
// Check if the other body has already been added to the island
if (mRigidBodyComponents.getIsAlreadyInIsland(otherBodyEntity)) continue;
// Insert the other body into the stack of bodies to visit
bodyEntityIndicesToVisit.push(otherBodyEntity);
mRigidBodyComponents.setIsAlreadyInIsland(otherBodyEntity, true);
}
}
// Reset the isAlreadyIsland variable of the static bodies so that they
// can also be included in the other islands
for (uint j=0; j < mRigidBodyComponents.getNbEnabledComponents(); j++) {
if (mRigidBodyComponents.mBodyTypes[j] == BodyType::STATIC) {
mRigidBodyComponents.mIsAlreadyInIsland[j] = false;
}
}
}
mCollisionDetection.mMapBodyToContactPairs.clear(true);
}
// Put bodies to sleep if needed.
/// For each island, if all the bodies have been almost still for a long enough period of
/// time, we put all the bodies of the island to sleep.
void PhysicsWorld::updateSleepingBodies(decimal timeStep) {
RP3D_PROFILE("PhysicsWorld::updateSleepingBodies()", mProfiler);
const decimal sleepLinearVelocitySquare = mSleepLinearVelocity * mSleepLinearVelocity;
const decimal sleepAngularVelocitySquare = mSleepAngularVelocity * mSleepAngularVelocity;
// For each island of the world
for (uint i=0; i<mIslands.getNbIslands(); i++) {
decimal minSleepTime = DECIMAL_LARGEST;
// For each body of the island
for (uint b=0; b < mIslands.bodyEntities[i].size(); b++) {
const Entity bodyEntity = mIslands.bodyEntities[i][b];
// Skip static bodies
if (mRigidBodyComponents.getBodyType(bodyEntity) == BodyType::STATIC) continue;
// If the body is velocity is large enough to stay awake
if (mRigidBodyComponents.getLinearVelocity(bodyEntity).lengthSquare() > sleepLinearVelocitySquare ||
mRigidBodyComponents.getAngularVelocity(bodyEntity).lengthSquare() > sleepAngularVelocitySquare ||
!mRigidBodyComponents.getIsAllowedToSleep(bodyEntity)) {
// Reset the sleep time of the body
mRigidBodyComponents.setSleepTime(bodyEntity, decimal(0.0));
minSleepTime = decimal(0.0);
}
else { // If the body velocity is below the sleeping velocity threshold
// Increase the sleep time
decimal sleepTime = mRigidBodyComponents.getSleepTime(bodyEntity);
mRigidBodyComponents.setSleepTime(bodyEntity, sleepTime + timeStep);
sleepTime = mRigidBodyComponents.getSleepTime(bodyEntity);
if (sleepTime < minSleepTime) {
minSleepTime = sleepTime;
}
}
}
// If the velocity of all the bodies of the island is under the
// sleeping velocity threshold for a period of time larger than
// the time required to become a sleeping body
if (minSleepTime >= mTimeBeforeSleep) {
// Put all the bodies of the island to sleep
for (uint b=0; b < mIslands.bodyEntities[i].size(); b++) {
const Entity bodyEntity = mIslands.bodyEntities[i][b];
RigidBody* body = mRigidBodyComponents.getRigidBody(bodyEntity);
body->setIsSleeping(true);
}
}
}
}
// Enable/Disable the sleeping technique.
/// The sleeping technique is used to put bodies that are not moving into sleep
/// to speed up the simulation.
/**
* @param isSleepingEnabled True if you want to enable the sleeping technique
* and false otherwise
*/
void PhysicsWorld::enableSleeping(bool isSleepingEnabled) {
mIsSleepingEnabled = isSleepingEnabled;
if (!mIsSleepingEnabled) {
// For each body of the world
List<RigidBody*>::Iterator it;
for (it = mRigidBodies.begin(); it != mRigidBodies.end(); ++it) {
// Wake up the rigid body
(*it)->setIsSleeping(false);
}
}
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::World,
"Physics World: isSleepingEnabled=" + (isSleepingEnabled ? std::string("true") : std::string("false")) , __FILE__, __LINE__);
}
// Set the number of iterations for the position constraint solver
/**
* @param nbIterations Number of iterations for the position solver
*/
void PhysicsWorld::setNbIterationsPositionSolver(uint nbIterations) {
mNbPositionSolverIterations = nbIterations;
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::World,
"Physics World: Set nb iterations position solver to " + std::to_string(nbIterations), __FILE__, __LINE__);
}
// Set the gravity vector of the world
/**
* @param gravity The gravity vector (in meter per seconds squared)
*/
void PhysicsWorld::setGravity(Vector3& gravity) {
mConfig.gravity = gravity;
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::World,
"Physics World: Set gravity vector to " + gravity.to_string(), __FILE__, __LINE__);
}
// Set the sleep linear velocity.
/// When the velocity of a body becomes smaller than the sleep linear/angular
/// velocity for a given amount of time, the body starts sleeping and does not need
/// to be simulated anymore.
/**
* @param sleepLinearVelocity The sleep linear velocity (in meters per second)
*/
void PhysicsWorld::setSleepLinearVelocity(decimal sleepLinearVelocity) {
assert(sleepLinearVelocity >= decimal(0.0));
mSleepLinearVelocity = sleepLinearVelocity;
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::World,
"Physics World: sleepLinearVelocity= " + std::to_string(sleepLinearVelocity), __FILE__, __LINE__);
}
// Set the sleep angular velocity.
/// When the velocity of a body becomes smaller than the sleep linear/angular
/// velocity for a given amount of time, the body starts sleeping and does not need
/// to be simulated anymore.
/**
* @param sleepAngularVelocity The sleep angular velocity (in radian per second)
*/
void PhysicsWorld::setSleepAngularVelocity(decimal sleepAngularVelocity) {
assert(sleepAngularVelocity >= decimal(0.0));
mSleepAngularVelocity = sleepAngularVelocity;
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::World,
"Physics World: sleepAngularVelocity= " + std::to_string(sleepAngularVelocity), __FILE__, __LINE__);
}
// Set the time a body is required to stay still before sleeping
/**
* @param timeBeforeSleep Time a body is required to stay still before sleeping (in seconds)
*/
void PhysicsWorld::setTimeBeforeSleep(decimal timeBeforeSleep) {
assert(timeBeforeSleep >= decimal(0.0));
mTimeBeforeSleep = timeBeforeSleep;
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::World,
"Physics World: timeBeforeSleep= " + std::to_string(timeBeforeSleep), __FILE__, __LINE__);
}
// Enable/Disable the gravity
/**
* @param isGravityEnabled True if you want to enable the gravity in the world
* and false otherwise
*/
void PhysicsWorld::setIsGravityEnabled(bool isGravityEnabled) {
mIsGravityEnabled = isGravityEnabled;
RP3D_LOG(mConfig.worldName, Logger::Level::Information, Logger::Category::World,
"Physics World: isGravityEnabled= " + (isGravityEnabled ? std::string("true") : std::string("false")), __FILE__, __LINE__);
}
// Return a constant pointer to a given CollisionBody of the world
/**
* @param index Index of a CollisionBody in the world
* @return Constant pointer to a given CollisionBody
*/
const CollisionBody* PhysicsWorld::getCollisionBody(uint index) const {
if (index >= getNbCollisionBodies()) {
RP3D_LOG(mConfig.worldName, Logger::Level::Error, Logger::Category::World,
"Error when getting collision body: index is out of bounds", __FILE__, __LINE__);
}
assert(index < mCollisionBodies.size());
return mCollisionBodies[index];
}
// Return a pointer to a given CollisionBody of the world
/**
* @param index Index of a CollisionBody in the world
* @return Pointer to a given CollisionBody
*/
CollisionBody* PhysicsWorld::getCollisionBody(uint index) {
if (index >= getNbCollisionBodies()) {
RP3D_LOG(mConfig.worldName, Logger::Level::Error, Logger::Category::World,
"Error when getting collision body: index is out of bounds", __FILE__, __LINE__);
}
assert(index < mCollisionBodies.size());
return mCollisionBodies[index];
}
// Return a constant pointer to a given RigidBody of the world
/**
* @param index Index of a RigidBody in the world
* @return Constant pointer to a given RigidBody
*/
const RigidBody* PhysicsWorld::getRigidBody(uint index) const {
if (index >= getNbRigidBodies()) {
RP3D_LOG(mConfig.worldName, Logger::Level::Error, Logger::Category::World,
"Error when getting rigid body: index is out of bounds", __FILE__, __LINE__);
}
assert(index < mRigidBodies.size());
return mRigidBodies[index];
}
// Return a pointer to a given RigidBody of the world
/**
* @param index Index of a RigidBody in the world
* @return Pointer to a given RigidBody
*/
RigidBody* PhysicsWorld::getRigidBody(uint index) {
if (index >= getNbRigidBodies()) {
RP3D_LOG(mConfig.worldName, Logger::Level::Error, Logger::Category::World,
"Error when getting rigid body: index is out of bounds", __FILE__, __LINE__);
}
assert(index < mRigidBodies.size());
return mRigidBodies[index];
}