reactphysics3d/src/constraint/Contact.cpp
2012-01-27 22:41:26 +00:00

173 lines
8.9 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2012 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "Contact.h"
using namespace reactphysics3d;
using namespace std;
// Constructor
Contact::Contact(Body* const body1, Body* const body2, const ContactInfo* contactInfo)
: Constraint(body1, body2, 3, true, CONTACT), normal(contactInfo->normal), penetrationDepth(contactInfo->penetrationDepth),
localPointOnBody1(contactInfo->localPoint1), localPointOnBody2(contactInfo->localPoint2),
worldPointOnBody1(contactInfo->worldPoint1), worldPointOnBody2(contactInfo->worldPoint2) {
assert(penetrationDepth > 0.0);
// Compute the auxiliary lower and upper bounds
// TODO : Now mC is only the mass of the first body but it is probably wrong
// TODO : Now g is 9.81 but we should use the true gravity value of the physics world.
mu_mc_g = FRICTION_COEFFICIENT * body1->getMass() * 9.81;
// Compute the friction vectors that span the tangential friction plane
computeFrictionVectors();
}
// Destructor
Contact::~Contact() {
}
// This method computes the jacobian matrix for all mathematical constraints
// The argument "J_sp" is the jacobian matrix of the constraint solver. This method
// fill in this matrix with all the jacobian matrix of the mathematical constraint
// of the contact. The argument "noConstraint", is the row were the method have
// to start to fill in the J_sp matrix.
void Contact::computeJacobian(int noConstraint, decimal J_sp[NB_MAX_CONSTRAINTS][2*6]) const {
assert(body1);
assert(body2);
Vector3 body1Position = body1->getTransform().getPosition();
Vector3 body2Position = body2->getTransform().getPosition();
int currentIndex = noConstraint; // Current constraint index
Vector3 r1 = worldPointOnBody1 - body1Position;
Vector3 r2 = worldPointOnBody2 - body2Position;
Vector3 r1CrossN = r1.cross(normal);
Vector3 r2CrossN = r2.cross(normal);
// Compute the jacobian matrix for the body 1 for the contact constraint
J_sp[currentIndex][0] = -normal.getX();
J_sp[currentIndex][1] = -normal.getY();
J_sp[currentIndex][2] = -normal.getZ();
J_sp[currentIndex][3] = -r1CrossN.getX();
J_sp[currentIndex][4] = -r1CrossN.getY();
J_sp[currentIndex][5] = -r1CrossN.getZ();
// Compute the jacobian matrix for the body 2 for the contact constraint
J_sp[currentIndex][6] = normal.getX();
J_sp[currentIndex][7] = normal.getY();
J_sp[currentIndex][8] = normal.getZ();
J_sp[currentIndex][9] = r2CrossN.getX();
J_sp[currentIndex][10] = r2CrossN.getY();
J_sp[currentIndex][11] = r2CrossN.getZ();
currentIndex++;
// Compute the jacobian matrix for the body 1 for the first friction constraint
Vector3 r1CrossU1 = r1.cross(frictionVectors[0]);
Vector3 r2CrossU1 = r2.cross(frictionVectors[0]);
Vector3 r1CrossU2 = r1.cross(frictionVectors[1]);
Vector3 r2CrossU2 = r2.cross(frictionVectors[1]);
J_sp[currentIndex][0] = -frictionVectors[0].getX();
J_sp[currentIndex][1] = -frictionVectors[0].getY();
J_sp[currentIndex][2] = -frictionVectors[0].getZ();
J_sp[currentIndex][3] = -r1CrossU1.getX();
J_sp[currentIndex][4] = -r1CrossU1.getY();
J_sp[currentIndex][5] = -r1CrossU1.getZ();
// Compute the jacobian matrix for the body 2 for the first friction constraint
J_sp[currentIndex][6] = frictionVectors[0].getX();
J_sp[currentIndex][7] = frictionVectors[0].getY();
J_sp[currentIndex][8] = frictionVectors[0].getZ();
J_sp[currentIndex][9] = r2CrossU1.getX();
J_sp[currentIndex][10] = r2CrossU1.getY();
J_sp[currentIndex][11] = r2CrossU1.getZ();
currentIndex++;
// Compute the jacobian matrix for the body 1 for the second friction constraint
J_sp[currentIndex][0] = -frictionVectors[1].getX();
J_sp[currentIndex][1] = -frictionVectors[1].getY();
J_sp[currentIndex][2] = -frictionVectors[1].getZ();
J_sp[currentIndex][3] = -r1CrossU2.getX();
J_sp[currentIndex][4] = -r1CrossU2.getY();
J_sp[currentIndex][5] = -r1CrossU2.getZ();
// Compute the jacobian matrix for the body 2 for the second friction constraint
J_sp[currentIndex][6] = frictionVectors[1].getX();
J_sp[currentIndex][7] = frictionVectors[1].getY();
J_sp[currentIndex][8] = frictionVectors[1].getZ();
J_sp[currentIndex][9] = r2CrossU2.getX();
J_sp[currentIndex][10] = r2CrossU2.getY();
J_sp[currentIndex][11] = r2CrossU2.getZ();
}
// Compute the lowerbounds values for all the mathematical constraints. The
// argument "lowerBounds" is the lowerbounds values vector of the constraint solver and
// this methods has to fill in this vector starting from the row "noConstraint"
void Contact::computeLowerBound(int noConstraint, decimal lowerBounds[NB_MAX_CONSTRAINTS]) const {
assert(noConstraint >= 0 && noConstraint + nbConstraints <= NB_MAX_CONSTRAINTS);
lowerBounds[noConstraint] = 0.0; // Lower bound for the contact constraint
lowerBounds[noConstraint + 1] = -mu_mc_g; // Lower bound for the first friction constraint
lowerBounds[noConstraint + 2] = -mu_mc_g; // Lower bound for the second friction constraint
}
// Compute the upperbounds values for all the mathematical constraints. The
// argument "upperBounds" is the upperbounds values vector of the constraint solver and
// this methods has to fill in this vector starting from the row "noConstraint"
void Contact::computeUpperBound(int noConstraint, decimal upperBounds[NB_MAX_CONSTRAINTS]) const {
assert(noConstraint >= 0 && noConstraint + nbConstraints <= NB_MAX_CONSTRAINTS);
upperBounds[noConstraint] = DECIMAL_INFINITY; // Upper bound for the contact constraint
upperBounds[noConstraint + 1] = mu_mc_g; // Upper bound for the first friction constraint
upperBounds[noConstraint + 2] = mu_mc_g; // Upper bound for the second friction constraint
}
// Compute the error values for all the mathematical constraints. The argument
// "errorValues" is the error values vector of the constraint solver and this
// method has to fill in this vector starting from the row "noConstraint"
void Contact::computeErrorValue(int noConstraint, decimal errorValues[]) const {
assert(body1);
assert(body2);
// TODO : Do we need this casting anymore ?
RigidBody* rigidBody1 = dynamic_cast<RigidBody*>(body1);
RigidBody* rigidBody2 = dynamic_cast<RigidBody*>(body2);
assert(noConstraint >= 0 && noConstraint + nbConstraints <= NB_MAX_CONSTRAINTS);
// Compute the error value for the contact constraint
Vector3 velocity1 = rigidBody1->getLinearVelocity();
Vector3 velocity2 = rigidBody2->getLinearVelocity();
decimal restitutionCoeff = rigidBody1->getRestitution() * rigidBody2->getRestitution();
decimal errorValue = restitutionCoeff * (normal.dot(velocity1) - normal.dot(velocity2));
// Assign the error value to the vector of error values
errorValues[noConstraint] = errorValue; // Error value for contact constraint
errorValues[noConstraint + 1] = 0.0; // Error value for friction constraint
errorValues[noConstraint + 2] = 0.0; // Error value for friction constraint
}