reactphysics3d/src/collision/shapes/ConeShape.cpp

112 lines
4.2 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2013 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include <complex>
#include "../../configuration.h"
#include "ConeShape.h"
#if defined(VISUAL_DEBUG)
#if defined(APPLE_OS)
#include <GLUT/glut.h>
#include <OpenGL/gl.h>
#elif defined(WINDOWS_OS)
#include <GL/glut.h>
#include <GL/gl.h>
#elif defined(LINUX_OS)
#include <GL/freeglut.h>
#include <GL/gl.h>
#endif
#endif
using namespace reactphysics3d;
// Constructor
ConeShape::ConeShape(decimal radius, decimal height)
: CollisionShape(CONE), mRadius(radius), mHalfHeight(height / decimal(2.0)) {
assert(radius > 0.0);
assert(mHalfHeight > 0.0);
// Compute the sine of the semi-angle at the apex point
mSinTheta = radius / (sqrt(radius * radius + height * height));
}
// Destructor
ConeShape::~ConeShape() {
}
// Return a local support point in a given direction with the object margin
inline Vector3 ConeShape::getLocalSupportPointWithMargin(const Vector3& direction) const {
// Compute the support point without the margin
Vector3 supportPoint = getLocalSupportPointWithoutMargin(direction);
// Add the margin to the support point
Vector3 unitVec(0.0, -1.0, 0.0);
if (direction.lengthSquare() > MACHINE_EPSILON * MACHINE_EPSILON) {
unitVec = direction.getUnit();
}
supportPoint += unitVec * getMargin();
return supportPoint;
}
// Return a local support point in a given direction without the object margin
inline Vector3 ConeShape::getLocalSupportPointWithoutMargin(const Vector3& direction) const {
const Vector3& v = direction;
decimal sinThetaTimesLengthV = mSinTheta * v.length();
Vector3 supportPoint;
if (v.y >= sinThetaTimesLengthV) {
supportPoint = Vector3(0.0, mHalfHeight, 0.0);
}
else {
decimal projectedLength = sqrt(v.x * v.x + v.z * v.z);
if (projectedLength > MACHINE_EPSILON) {
decimal d = mRadius / projectedLength;
supportPoint = Vector3(v.x * d, -mHalfHeight, v.z * d);
}
else {
supportPoint = Vector3(mRadius, -mHalfHeight, 0.0);
}
}
return supportPoint;
}
#ifdef VISUAL_DEBUG
// Draw the cone (only for debuging purpose)
void ConeShape::draw() const {
// Draw in red
glColor3f(1.0, 0.0, 0.0);
// Draw the sphere
glutWireCone(mRadius, 2.0 * mHalfHeight, 50, 50);
}
#endif