git-svn-id: https://reactphysics3d.googlecode.com/svn/trunk@429 92aac97c-a6ce-11dd-a772-7fcde58d38e6
205 lines
10 KiB
C++
205 lines
10 KiB
C++
/********************************************************************************
|
|
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
|
|
* Copyright (c) 2010 Daniel Chappuis *
|
|
*********************************************************************************
|
|
* *
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy *
|
|
* of this software and associated documentation files (the "Software"), to deal *
|
|
* in the Software without restriction, including without limitation the rights *
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell *
|
|
* copies of the Software, and to permit persons to whom the Software is *
|
|
* furnished to do so, subject to the following conditions: *
|
|
* *
|
|
* The above copyright notice and this permission notice shall be included in *
|
|
* all copies or substantial portions of the Software. *
|
|
* *
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE *
|
|
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER *
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, *
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN *
|
|
* THE SOFTWARE. *
|
|
********************************************************************************/
|
|
|
|
// Libraries
|
|
#include "Contact.h"
|
|
|
|
using namespace reactphysics3d;
|
|
using namespace std;
|
|
|
|
// Constructor
|
|
Contact::Contact(Body* const body1, Body* const body2, const Vector3D& normal, double penetrationDepth, const vector<Vector3D>& points)
|
|
:Constraint(body1, body2, 3*points.size(), true), normal(normal), penetrationDepth(penetrationDepth), points(points), nbPoints(points.size()) {
|
|
|
|
// Compute the auxiliary lower and upper bounds
|
|
// TODO : Now mC is only the mass of the first body but it is probably wrong
|
|
// TODO : Now g is 9.81 but we should use the true gravity value of the physics world.
|
|
mu_mc_g = FRICTION_COEFFICIENT * body1->getMass() * 9.81;
|
|
|
|
// Compute the friction vectors that span the tangential friction plane
|
|
computeFrictionVectors();
|
|
}
|
|
|
|
// Destructor
|
|
Contact::~Contact() {
|
|
|
|
}
|
|
|
|
// This method computes the jacobian matrix for all mathematical constraints
|
|
// The argument "J_sp" is the jacobian matrix of the constraint solver. This method
|
|
// fill in this matrix with all the jacobian matrix of the mathematical constraint
|
|
// of the contact. The argument "noConstraint", is the row were the method have
|
|
// to start to fill in the J_sp matrix.
|
|
void Contact::computeJacobian(int noConstraint, Matrix1x6**& J_sp) const {
|
|
RigidBody* rigidBody1 = dynamic_cast<RigidBody*>(body1);
|
|
RigidBody* rigidBody2 = dynamic_cast<RigidBody*>(body2);
|
|
Vector3D r1;
|
|
Vector3D r2;
|
|
Vector3D r1CrossN;
|
|
Vector3D r2CrossN;
|
|
Vector3D r1CrossU1;
|
|
Vector3D r2CrossU1;
|
|
Vector3D r1CrossU2;
|
|
Vector3D r2CrossU2;
|
|
Vector3D body1Position = rigidBody1->getTransform().getPosition();
|
|
Vector3D body2Position = rigidBody2->getTransform().getPosition();
|
|
int currentIndex = noConstraint; // Current constraint index
|
|
|
|
assert(rigidBody1);
|
|
assert(rigidBody2);
|
|
|
|
// For each point in the contact
|
|
for (int i=0; i<nbPoints; i++) {
|
|
|
|
r1 = points[i] - body1Position;
|
|
r2 = points[i] - body2Position;
|
|
r1CrossN = r1.cross(normal);
|
|
r2CrossN = r2.cross(normal);
|
|
|
|
// Compute the jacobian matrix for the body 1 for the contact constraint
|
|
//J_sp[currentIndex][0].changeSize(1, 6);
|
|
J_sp[currentIndex][0].setValue(0, -normal.getX());
|
|
J_sp[currentIndex][0].setValue(1, -normal.getY());
|
|
J_sp[currentIndex][0].setValue(2, -normal.getZ());
|
|
J_sp[currentIndex][0].setValue(3, -r1CrossN.getX());
|
|
J_sp[currentIndex][0].setValue(4, -r1CrossN.getY());
|
|
J_sp[currentIndex][0].setValue(5, -r1CrossN.getZ());
|
|
|
|
// Compute the jacobian matrix for the body 2 for the contact constraint
|
|
//J_sp[currentIndex][1].changeSize(1, 6);
|
|
J_sp[currentIndex][1].setValue(0, normal.getX());
|
|
J_sp[currentIndex][1].setValue(1, normal.getY());
|
|
J_sp[currentIndex][1].setValue(2, normal.getZ());
|
|
J_sp[currentIndex][1].setValue(3, r2CrossN.getX());
|
|
J_sp[currentIndex][1].setValue(4, r2CrossN.getY());
|
|
J_sp[currentIndex][1].setValue(5, r2CrossN.getZ());
|
|
|
|
currentIndex++;
|
|
|
|
// Compute the jacobian matrix for the body 1 for the first friction constraint
|
|
r1CrossU1 = r1.cross(frictionVectors[0]);
|
|
r2CrossU1 = r2.cross(frictionVectors[0]);
|
|
r1CrossU2 = r1.cross(frictionVectors[1]);
|
|
r2CrossU2 = r2.cross(frictionVectors[1]);
|
|
//J_sp[currentIndex][0].changeSize(1, 6);
|
|
J_sp[currentIndex][0].setValue(0, -frictionVectors[0].getX());
|
|
J_sp[currentIndex][0].setValue(1, -frictionVectors[0].getY());
|
|
J_sp[currentIndex][0].setValue(2, -frictionVectors[0].getZ());
|
|
J_sp[currentIndex][0].setValue(3, -r1CrossU1.getX());
|
|
J_sp[currentIndex][0].setValue(4, -r1CrossU1.getY());
|
|
J_sp[currentIndex][0].setValue(5, -r1CrossU1.getZ());
|
|
|
|
// Compute the jacobian matrix for the body 2 for the first friction constraint
|
|
//J_sp[currentIndex][1].changeSize(1, 6);
|
|
J_sp[currentIndex][1].setValue(0, frictionVectors[0].getX());
|
|
J_sp[currentIndex][1].setValue(1, frictionVectors[0].getY());
|
|
J_sp[currentIndex][1].setValue(2, frictionVectors[0].getZ());
|
|
J_sp[currentIndex][1].setValue(3, r2CrossU1.getX());
|
|
J_sp[currentIndex][1].setValue(4, r2CrossU1.getY());
|
|
J_sp[currentIndex][1].setValue(5, r2CrossU1.getZ());
|
|
|
|
currentIndex++;
|
|
|
|
// Compute the jacobian matrix for the body 1 for the second friction constraint
|
|
//J_sp[currentIndex][0].changeSize(1, 6);
|
|
J_sp[currentIndex][0].setValue(0, -frictionVectors[1].getX());
|
|
J_sp[currentIndex][0].setValue(1, -frictionVectors[1].getY());
|
|
J_sp[currentIndex][0].setValue(2, -frictionVectors[1].getZ());
|
|
J_sp[currentIndex][0].setValue(3, -r1CrossU2.getX());
|
|
J_sp[currentIndex][0].setValue(4, -r1CrossU2.getY());
|
|
J_sp[currentIndex][0].setValue(5, -r1CrossU2.getZ());
|
|
//J_sp[currentIndex][1].changeSize(1, 6);
|
|
|
|
// Compute the jacobian matrix for the body 2 for the second friction constraint
|
|
J_sp[currentIndex][1].setValue(0, frictionVectors[1].getX());
|
|
J_sp[currentIndex][1].setValue(1, frictionVectors[1].getY());
|
|
J_sp[currentIndex][1].setValue(2, frictionVectors[1].getZ());
|
|
J_sp[currentIndex][1].setValue(3, r2CrossU2.getX());
|
|
J_sp[currentIndex][1].setValue(4, r2CrossU2.getY());
|
|
J_sp[currentIndex][1].setValue(5, r2CrossU2.getZ());
|
|
|
|
currentIndex++;
|
|
}
|
|
}
|
|
|
|
// Compute the lowerbounds values for all the mathematical constraints. The
|
|
// argument "lowerBounds" is the lowerbounds values vector of the constraint solver and
|
|
// this methods has to fill in this vector starting from the row "noConstraint"
|
|
void Contact::computeLowerBound(int noConstraint, Vector& lowerBounds) const {
|
|
int index = noConstraint;
|
|
|
|
assert(noConstraint >= 0 && noConstraint + nbConstraints <= lowerBounds.getNbComponent());
|
|
|
|
// For each constraint
|
|
for (int i=0; i<nbPoints; i++) {
|
|
lowerBounds.setValue(index, 0.0); // Lower bound for the contact constraint
|
|
lowerBounds.setValue(index + 1, -mu_mc_g); // Lower bound for the first friction constraint
|
|
lowerBounds.setValue(index + 2, -mu_mc_g); // Lower bound for the second friction constraint
|
|
index += 3;
|
|
}
|
|
}
|
|
|
|
// Compute the upperbounds values for all the mathematical constraints. The
|
|
// argument "upperBounds" is the upperbounds values vector of the constraint solver and
|
|
// this methods has to fill in this vector starting from the row "noConstraint"
|
|
void Contact::computeUpperBound(int noConstraint, Vector& upperBounds) const {
|
|
int index = noConstraint;
|
|
|
|
assert(noConstraint >= 0 && noConstraint + nbConstraints <= upperBounds.getNbComponent());
|
|
|
|
// For each constraint
|
|
for (int i=0; i<nbPoints; i++) {
|
|
upperBounds.setValue(index, INFINITY_CONST); // Upper bound for the contact constraint
|
|
upperBounds.setValue(index + 1, mu_mc_g); // Upper bound for the first friction constraint
|
|
upperBounds.setValue(index + 2, mu_mc_g); // Upper bound for the second friction constraint
|
|
index += 3;
|
|
}
|
|
}
|
|
|
|
// Compute the error values for all the mathematical constraints. The argument
|
|
// "errorValues" is the error values vector of the constraint solver and this
|
|
// method has to fill in this vector starting from the row "noConstraint"
|
|
void Contact::computeErrorValue(int noConstraint, Vector& errorValues) const {
|
|
RigidBody* rigidBody1 = dynamic_cast<RigidBody*>(body1);
|
|
RigidBody* rigidBody2 = dynamic_cast<RigidBody*>(body2);
|
|
int index = noConstraint;
|
|
|
|
assert(rigidBody1);
|
|
assert(rigidBody2);
|
|
assert(noConstraint >= 0 && noConstraint + nbConstraints <= errorValues.getNbComponent());
|
|
|
|
// Compute the error value for the contact constraint
|
|
Vector3D velocity1 = rigidBody1->getLinearVelocity();
|
|
Vector3D velocity2 = rigidBody2->getLinearVelocity();
|
|
double restitutionCoeff = rigidBody1->getRestitution() * rigidBody2->getRestitution();
|
|
double errorValue = restitutionCoeff * (normal.dot(velocity1) - normal.dot(velocity2)) + PENETRATION_FACTOR * penetrationDepth;
|
|
|
|
// Assign the error value to the vector of error values
|
|
for (int i=0; i<nbPoints; i++) {
|
|
errorValues.setValue(index, errorValue); // Error value for contact constraint
|
|
errorValues.setValue(index + 1, 0.0); // Error value for friction constraint
|
|
errorValues.setValue(index + 2, 0.0); // Error value for friction constraint
|
|
index += 3;
|
|
}
|
|
} |