reactphysics3d/src/mathematics/Transform.h

154 lines
8.1 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2012 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef TRANSFORM_H
#define TRANSFORM_H
// Libraries
#include "Matrix3x3.h"
#include "Vector3.h"
#include "Quaternion.h"
// ReactPhysiscs3D namespace
namespace reactphysics3d {
/* -------------------------------------------------------------------
Class Transform :
This class represents a position and an orientation in 3D. It can
also be seen as representing a translation and a rotation
-------------------------------------------------------------------
*/
class Transform {
private :
Vector3 position; // Position
Quaternion orientation; // Orientation
public :
Transform(); // Constructor
Transform(const Vector3& position, const Matrix3x3& orientation); // Constructor
Transform(const Vector3& position, const Quaternion& orientation); // Constructor
~Transform(); // Destructor
const Vector3& getPosition() const; // Return the origin of the transform
void setPosition(const Vector3& position); // Set the origin of the transform
const Quaternion& getOrientation() const; // Return the orientation quaternion
void setOrientation(const Quaternion& orientation); // Set the rotation quaternion
void setToIdentity(); // Set the transform to the identity transform
void setFromOpenGL(decimal* openglMatrix); // Set the transform from an OpenGL transform matrix
void getOpenGLMatrix(decimal* openglMatrix) const; // Get the OpenGL matrix of the transform
Transform inverse() const; // Return the inverse of the transform
static Transform interpolateTransforms(const Transform& oldTransform,
const Transform& newTransform,
decimal interpolationFactor); // Return an interpolated transform
Vector3 operator*(const Vector3& vector) const; // Return the transformed vector
Transform operator*(const Transform& transform2) const; // Operator of multiplication of a transform with another one
bool operator==(const Transform& transform2) const; // Return true if the two transforms are equal
bool operator!=(const Transform& transform2) const; // Return true if the two transforms are different
};
// Return the position of the transform
inline const Vector3& Transform::getPosition() const {
return position;
}
// Set the origin of the transform
inline void Transform::setPosition(const Vector3& position) {
this->position = position;
}
// Return the rotation matrix
inline const Quaternion& Transform::getOrientation() const {
return orientation;
}
// Set the rotation matrix of the transform
inline void Transform::setOrientation(const Quaternion& orientation) {
this->orientation = orientation;
}
// Set the transform to the identity transform
inline void Transform::setToIdentity() {
position = Vector3(0.0, 0.0, 0.0);
orientation = Quaternion::identity();
}
// Set the transform from an OpenGL transform matrix
inline void Transform::setFromOpenGL(decimal* openglMatrix) {
Matrix3x3 matrix(openglMatrix[0], openglMatrix[4], openglMatrix[8],
openglMatrix[1], openglMatrix[5], openglMatrix[9],
openglMatrix[2], openglMatrix[6], openglMatrix[10]);
orientation = Quaternion(matrix);
position.setAllValues(openglMatrix[12], openglMatrix[13], openglMatrix[14]);
}
// Get the OpenGL matrix of the transform
inline void Transform::getOpenGLMatrix(decimal* openglMatrix) const {
const Matrix3x3& matrix = orientation.getMatrix();
openglMatrix[0] = matrix.getValue(0, 0); openglMatrix[1] = matrix.getValue(1, 0); openglMatrix[2] = matrix.getValue(2, 0); openglMatrix[3] = 0.0;
openglMatrix[4] = matrix.getValue(0, 1); openglMatrix[5] = matrix.getValue(1, 1); openglMatrix[6] = matrix.getValue(2, 1); openglMatrix[7] = 0.0;
openglMatrix[8] = matrix.getValue(0, 2); openglMatrix[9] = matrix.getValue(1, 2); openglMatrix[10] = matrix.getValue(2, 2); openglMatrix[11] = 0.0;
openglMatrix[12] = position.getX(); openglMatrix[13] = position.getY(); openglMatrix[14] = position.getZ(); openglMatrix[15] = 1.0;
}
// Return the inverse of the transform
inline Transform Transform::inverse() const {
const Quaternion& invQuaternion = orientation.getInverse();
Matrix3x3 invMatrix = invQuaternion.getMatrix();
return Transform(invMatrix * (-position), invQuaternion);
}
// Return an interpolated transform
inline Transform Transform::interpolateTransforms(const Transform& oldTransform, const Transform& newTransform, decimal interpolationFactor) {
Vector3 interPosition = oldTransform.position * (1.0 - interpolationFactor) + newTransform.position * interpolationFactor;
Quaternion interOrientation = Quaternion::slerp(oldTransform.orientation, newTransform.orientation, interpolationFactor);
return Transform(interPosition, interOrientation);
}
// Return the transformed vector
inline Vector3 Transform::operator*(const Vector3& vector) const {
return (orientation.getMatrix() * vector) + position;
}
// Operator of multiplication of a transform with another one
inline Transform Transform::operator*(const Transform& transform2) const {
return Transform(position + orientation.getMatrix() * transform2.position, orientation * transform2.orientation);
}
// Return true if the two transforms are equal
inline bool Transform::operator==(const Transform& transform2) const {
return (position == transform2.position) && (orientation == transform2.orientation);
}
// Return true if the two transforms are different
inline bool Transform::operator!=(const Transform& transform2) const {
return !(*this == transform2);
}
} // End of the ReactPhysics3D namespace
#endif