reactphysics3d/src/collision/narrowphase/EPA/EPAAlgorithm.cpp

411 lines
20 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2012 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "EPAAlgorithm.h"
#include "../GJK/GJKAlgorithm.h"
#include "TrianglesStore.h"
// We want to use the ReactPhysics3D namespace
using namespace reactphysics3d;
// Constructor
EPAAlgorithm::EPAAlgorithm(MemoryPool<ContactInfo>& memoryPoolContactInfos)
: mMemoryPoolContactInfos(memoryPoolContactInfos) {
}
// Destructor
EPAAlgorithm::~EPAAlgorithm() {
}
// Decide if the origin is in the tetrahedron
// Return 0 if the origin is in the tetrahedron and return the number (1,2,3 or 4) of
// the vertex that is wrong if the origin is not in the tetrahedron
int EPAAlgorithm::isOriginInTetrahedron(const Vector3& p1, const Vector3& p2,
const Vector3& p3, const Vector3& p4) const {
// Check vertex 1
Vector3 normal1 = (p2-p1).cross(p3-p1);
if (normal1.dot(p1) > 0.0 == normal1.dot(p4) > 0.0) {
return 4;
}
// Check vertex 2
Vector3 normal2 = (p4-p2).cross(p3-p2);
if (normal2.dot(p2) > 0.0 == normal2.dot(p1) > 0.0) {
return 1;
}
// Check vertex 3
Vector3 normal3 = (p4-p3).cross(p1-p3);
if (normal3.dot(p3) > 0.0 == normal3.dot(p2) > 0.0) {
return 2;
}
// Check vertex 4
Vector3 normal4 = (p2-p4).cross(p1-p4);
if (normal4.dot(p4) > 0.0 == normal4.dot(p3) > 0.0) {
return 3;
}
// The origin is in the tetrahedron, we return 0
return 0;
}
// Compute the penetration depth with the EPA algorithms
// This method computes the penetration depth and contact points between two
// enlarged objects (with margin) where the original objects (without margin)
// intersect. An initial simplex that contains origin has been computed with
// GJK algorithm. The EPA Algorithm will extend this simplex polytope to find
// the correct penetration depth
bool EPAAlgorithm::computePenetrationDepthAndContactPoints(const Simplex& simplex,
const CollisionShape* collisionShape1,
const Transform& transform1,
const CollisionShape* collisionShape2,
const Transform& transform2,
Vector3& v, ContactInfo*& contactInfo) {
Vector3 suppPointsA[MAX_SUPPORT_POINTS]; // Support points of object A in local coordinates
Vector3 suppPointsB[MAX_SUPPORT_POINTS]; // Support points of object B in local coordinates
Vector3 points[MAX_SUPPORT_POINTS]; // Current points
TrianglesStore triangleStore; // Store the triangles
TriangleEPA* triangleHeap[MAX_FACETS]; // Heap that contains the face
// candidate of the EPA algorithm
// Transform a point from local space of body 2 to local
// space of body 1 (the GJK algorithm is done in local space of body 1)
Transform body2Tobody1 = transform1.inverse() * transform2;
// Matrix that transform a direction from local
// space of body 1 into local space of body 2
Matrix3x3 rotateToBody2 = transform2.getOrientation().getMatrix().getTranspose() *
transform1.getOrientation().getMatrix();
// Get the simplex computed previously by the GJK algorithm
unsigned int nbVertices = simplex.getSimplex(suppPointsA, suppPointsB, points);
// Compute the tolerance
decimal tolerance = MACHINE_EPSILON * simplex.getMaxLengthSquareOfAPoint();
// Number of triangles in the polytope
unsigned int nbTriangles = 0;
// Clear the storing of triangles
triangleStore.clear();
// Select an action according to the number of points in the simplex
// computed with GJK algorithm in order to obtain an initial polytope for
// The EPA algorithm.
switch(nbVertices) {
case 1:
// Only one point in the simplex (which should be the origin).
// We have a touching contact with zero penetration depth.
// We drop that kind of contact. Therefore, we return false
return false;
case 2: {
// The simplex returned by GJK is a line segment d containing the origin.
// We add two additional support points to construct a hexahedron (two tetrahedron
// glued together with triangle faces. The idea is to compute three different vectors
// v1, v2 and v3 that are orthogonal to the segment d. The three vectors are relatively
// rotated of 120 degree around the d segment. The the three new points to
// construct the polytope are the three support points in those three directions
// v1, v2 and v3.
// Direction of the segment
Vector3 d = (points[1] - points[0]).getUnit();
// Choose the coordinate axis from the minimal absolute component of the vector d
int minAxis = d.getAbsoluteVector().getMinAxis();
// Compute sin(60)
const decimal sin60 = sqrt(3.0) * 0.5;
// Create a rotation quaternion to rotate the vector v1 to get the vectors
// v2 and v3
Quaternion rotationQuat(d.x * sin60, d.y * sin60, d.z * sin60, 0.5);
// Construct the corresponding rotation matrix
Matrix3x3 rotationMat = rotationQuat.getMatrix();
// Compute the vector v1, v2, v3
Vector3 v1 = d.cross(Vector3(minAxis == 0, minAxis == 1, minAxis == 2));
Vector3 v2 = rotationMat * v1;
Vector3 v3 = rotationMat * v2;
// Compute the support point in the direction of v1
suppPointsA[2] = collisionShape1->getLocalSupportPoint(v1, OBJECT_MARGIN);
suppPointsB[2] = body2Tobody1 * collisionShape2->getLocalSupportPoint(rotateToBody2 *
(-v1),
OBJECT_MARGIN);
points[2] = suppPointsA[2] - suppPointsB[2];
// Compute the support point in the direction of v2
suppPointsA[3] = collisionShape1->getLocalSupportPoint(v2, OBJECT_MARGIN);
suppPointsB[3] = body2Tobody1 * collisionShape2->getLocalSupportPoint(rotateToBody2 *
(-v2),
OBJECT_MARGIN);
points[3] = suppPointsA[3] - suppPointsB[3];
// Compute the support point in the direction of v3
suppPointsA[4] = collisionShape1->getLocalSupportPoint(v3, OBJECT_MARGIN);
suppPointsB[4] = body2Tobody1 * collisionShape2->getLocalSupportPoint(rotateToBody2 *
(-v3),
OBJECT_MARGIN);
points[4] = suppPointsA[4] - suppPointsB[4];
// Now we have an hexahedron (two tetrahedron glued together). We can simply keep the
// tetrahedron that contains the origin in order that the initial polytope of the
// EPA algorithm is a tetrahedron, which is simpler to deal with.
// If the origin is in the tetrahedron of points 0, 2, 3, 4
if (isOriginInTetrahedron(points[0], points[2], points[3], points[4]) == 0) {
// We use the point 4 instead of point 1 for the initial tetrahedron
suppPointsA[1] = suppPointsA[4];
suppPointsB[1] = suppPointsB[4];
points[1] = points[4];
}
// If the origin is in the tetrahedron of points 1, 2, 3, 4
else if (isOriginInTetrahedron(points[1], points[2], points[3], points[4]) == 0) {
// We use the point 4 instead of point 0 for the initial tetrahedron
suppPointsA[0] = suppPointsA[4];
suppPointsB[0] = suppPointsB[4];
points[0] = points[4];
}
else {
// The origin is not in the initial polytope
return false;
}
// The polytope contains now 4 vertices
nbVertices = 4;
}
case 4: {
// The simplex computed by the GJK algorithm is a tetrahedron. Here we check
// if this tetrahedron contains the origin. If it is the case, we keep it and
// otherwise we remove the wrong vertex of the tetrahedron and go in the case
// where the GJK algorithm compute a simplex of three vertices.
// Check if the tetrahedron contains the origin (or wich is the wrong vertex otherwise)
int badVertex = isOriginInTetrahedron(points[0], points[1], points[2], points[3]);
// If the origin is in the tetrahedron
if (badVertex == 0) {
// The tetrahedron is a correct initial polytope for the EPA algorithm.
// Therefore, we construct the tetrahedron.
// Comstruct the 4 triangle faces of the tetrahedron
TriangleEPA* face0 = triangleStore.newTriangle(points, 0, 1, 2);
TriangleEPA* face1 = triangleStore.newTriangle(points, 0, 3, 1);
TriangleEPA* face2 = triangleStore.newTriangle(points, 0, 2, 3);
TriangleEPA* face3 = triangleStore.newTriangle(points, 1, 3, 2);
// If the constructed tetrahedron is not correct
if (!(face0 && face1 && face2 && face3 && face0->getDistSquare() > 0.0 &&
face1->getDistSquare() > 0.0 && face2->getDistSquare() > 0.0 &&
face3->getDistSquare() > 0.0)) {
return false;
}
// Associate the edges of neighbouring triangle faces
link(EdgeEPA(face0, 0), EdgeEPA(face1, 2));
link(EdgeEPA(face0, 1), EdgeEPA(face3, 2));
link(EdgeEPA(face0, 2), EdgeEPA(face2, 0));
link(EdgeEPA(face1, 0), EdgeEPA(face2, 2));
link(EdgeEPA(face1, 1), EdgeEPA(face3, 0));
link(EdgeEPA(face2, 1), EdgeEPA(face3, 1));
// Add the triangle faces in the candidate heap
addFaceCandidate(face0, triangleHeap, nbTriangles, DECIMAL_LARGEST);
addFaceCandidate(face1, triangleHeap, nbTriangles, DECIMAL_LARGEST);
addFaceCandidate(face2, triangleHeap, nbTriangles, DECIMAL_LARGEST);
addFaceCandidate(face3, triangleHeap, nbTriangles, DECIMAL_LARGEST);
break;
}
// If the tetrahedron contains a wrong vertex (the origin is not inside the tetrahedron)
if (badVertex < 4) {
// Replace the wrong vertex with the point 5 (if it exists)
suppPointsA[badVertex-1] = suppPointsA[4];
suppPointsB[badVertex-1] = suppPointsB[4];
points[badVertex-1] = points[4];
}
// We have removed the wrong vertex
nbVertices = 3;
}
case 3: {
// The GJK algorithm returned a triangle that contains the origin.
// We need two new vertices to obtain a hexahedron. The two new vertices
// are the support points in the "n" and "-n" direction where "n" is the
// normal of the triangle.
// Compute the normal of the triangle
Vector3 v1 = points[1] - points[0];
Vector3 v2 = points[2] - points[0];
Vector3 n = v1.cross(v2);
// Compute the two new vertices to obtain a hexahedron
suppPointsA[3] = collisionShape1->getLocalSupportPoint(n, OBJECT_MARGIN);
suppPointsB[3] = body2Tobody1 * collisionShape2->getLocalSupportPoint(rotateToBody2 *
(-n),
OBJECT_MARGIN);
points[3] = suppPointsA[3] - suppPointsB[3];
suppPointsA[4] = collisionShape1->getLocalSupportPoint(-n, OBJECT_MARGIN);
suppPointsB[4] = body2Tobody1 * collisionShape2->getLocalSupportPoint(rotateToBody2 * n,
OBJECT_MARGIN);
points[4] = suppPointsA[4] - suppPointsB[4];
// Construct the triangle faces
TriangleEPA* face0 = triangleStore.newTriangle(points, 0, 1, 3);
TriangleEPA* face1 = triangleStore.newTriangle(points, 1, 2, 3);
TriangleEPA* face2 = triangleStore.newTriangle(points, 2, 0, 3);
TriangleEPA* face3 = triangleStore.newTriangle(points, 0, 2, 4);
TriangleEPA* face4 = triangleStore.newTriangle(points, 2, 1, 4);
TriangleEPA* face5 = triangleStore.newTriangle(points, 1, 0, 4);
// If the polytope hasn't been correctly constructed
if (!(face0 && face1 && face2 && face3 && face4 && face5 &&
face0->getDistSquare() > 0.0 && face1->getDistSquare() > 0.0 &&
face2->getDistSquare() > 0.0 && face3->getDistSquare() > 0.0 &&
face4->getDistSquare() > 0.0 && face5->getDistSquare() > 0.0)) {
return false;
}
// Associate the edges of neighbouring faces
link(EdgeEPA(face0, 1), EdgeEPA(face1, 2));
link(EdgeEPA(face1, 1), EdgeEPA(face2, 2));
link(EdgeEPA(face2, 1), EdgeEPA(face0, 2));
link(EdgeEPA(face0, 0), EdgeEPA(face5, 0));
link(EdgeEPA(face1, 0), EdgeEPA(face4, 0));
link(EdgeEPA(face2, 0), EdgeEPA(face3, 0));
link(EdgeEPA(face3, 1), EdgeEPA(face4, 2));
link(EdgeEPA(face4, 1), EdgeEPA(face5, 2));
link(EdgeEPA(face5, 1), EdgeEPA(face3, 2));
// Add the candidate faces in the heap
addFaceCandidate(face0, triangleHeap, nbTriangles, DECIMAL_LARGEST);
addFaceCandidate(face1, triangleHeap, nbTriangles, DECIMAL_LARGEST);
addFaceCandidate(face2, triangleHeap, nbTriangles, DECIMAL_LARGEST);
addFaceCandidate(face3, triangleHeap, nbTriangles, DECIMAL_LARGEST);
addFaceCandidate(face4, triangleHeap, nbTriangles, DECIMAL_LARGEST);
addFaceCandidate(face5, triangleHeap, nbTriangles, DECIMAL_LARGEST);
nbVertices = 5;
}
break;
}
// At this point, we have a polytope that contains the origin. Therefore, we
// can run the EPA algorithm.
if (nbTriangles == 0) {
return false;
}
TriangleEPA* triangle = 0;
decimal upperBoundSquarePenDepth = DECIMAL_LARGEST;
do {
triangle = triangleHeap[0];
// Get the next candidate face (the face closest to the origin)
std::pop_heap(&triangleHeap[0], &triangleHeap[nbTriangles], mTriangleComparison);
nbTriangles--;
// If the candidate face in the heap is not obsolete
if (!triangle->getIsObsolete()) {
// If we have reached the maximum number of support points
if (nbVertices == MAX_SUPPORT_POINTS) {
assert(false);
break;
}
// Compute the support point of the Minkowski
// difference (A-B) in the closest point direction
suppPointsA[nbVertices] = collisionShape1->getLocalSupportPoint(
triangle->getClosestPoint(), OBJECT_MARGIN);
suppPointsB[nbVertices] = body2Tobody1 * collisionShape2->getLocalSupportPoint(
rotateToBody2 * (-triangle->getClosestPoint()),
OBJECT_MARGIN);
points[nbVertices] = suppPointsA[nbVertices] - suppPointsB[nbVertices];
int indexNewVertex = nbVertices;
nbVertices++;
// Update the upper bound of the penetration depth
decimal wDotv = points[indexNewVertex].dot(triangle->getClosestPoint());
assert(wDotv > 0.0);
decimal wDotVSquare = wDotv * wDotv / triangle->getDistSquare();
if (wDotVSquare < upperBoundSquarePenDepth) {
upperBoundSquarePenDepth = wDotVSquare;
}
// Compute the error
decimal error = wDotv - triangle->getDistSquare();
if (error <= std::max(tolerance, REL_ERROR_SQUARE * wDotv) ||
points[indexNewVertex] == points[(*triangle)[0]] ||
points[indexNewVertex] == points[(*triangle)[1]] ||
points[indexNewVertex] == points[(*triangle)[2]]) {
break;
}
// Now, we compute the silhouette cast by the new vertex. The current triangle
// face will not be in the convex hull. We start the local recursive silhouette
// algorithm from the current triangle face.
int i = triangleStore.getNbTriangles();
if (!triangle->computeSilhouette(points, indexNewVertex, triangleStore)) {
break;
}
// Add all the new triangle faces computed with the silhouette algorithm
// to the candidates list of faces of the current polytope
while(i != triangleStore.getNbTriangles()) {
TriangleEPA* newTriangle = &triangleStore[i];
addFaceCandidate(newTriangle, triangleHeap, nbTriangles, upperBoundSquarePenDepth);
i++;
}
}
} while(nbTriangles > 0 && triangleHeap[0]->getDistSquare() <= upperBoundSquarePenDepth);
// Compute the contact info
v = transform1.getOrientation().getMatrix() * triangle->getClosestPoint();
Vector3 pALocal = triangle->computeClosestPointOfObject(suppPointsA);
Vector3 pBLocal = body2Tobody1.inverse() * triangle->computeClosestPointOfObject(suppPointsB);
Vector3 normal = v.getUnit();
decimal penetrationDepth = v.length();
assert(penetrationDepth > 0.0);
// Create the contact info object
contactInfo = new (mMemoryPoolContactInfos.allocateObject()) ContactInfo(normal,
penetrationDepth,
pALocal, pBLocal);
return true;
}