reactphysics3d/src/collision/narrowphase/CapsuleVsConvexPolyhedronAlgorithm.cpp

167 lines
9.2 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2018 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "CapsuleVsConvexPolyhedronAlgorithm.h"
#include "SAT/SATAlgorithm.h"
#include "GJK/GJKAlgorithm.h"
#include "collision/shapes/CapsuleShape.h"
#include "collision/shapes/ConvexPolyhedronShape.h"
#include "collision/NarrowPhaseInfo.h"
#include "collision/ContactPointInfo.h"
#include <cassert>
// We want to use the ReactPhysics3D namespace
using namespace reactphysics3d;
// Compute the narrow-phase collision detection between a capsule and a polyhedron
// This technique is based on the "Robust Contact Creation for Physics Simulations" presentation
// by Dirk Gregorius.
bool CapsuleVsConvexPolyhedronAlgorithm::testCollision(NarrowPhaseInfo* narrowPhaseInfo, bool reportContacts,
MemoryAllocator& memoryAllocator) {
// First, we run the GJK algorithm
GJKAlgorithm gjkAlgorithm;
SATAlgorithm satAlgorithm(memoryAllocator);
#ifdef IS_PROFILING_ACTIVE
gjkAlgorithm.setProfiler(mProfiler);
satAlgorithm.setProfiler(mProfiler);
#endif
// Get the last frame collision info
LastFrameCollisionInfo* lastFrameCollisionInfo = narrowPhaseInfo->getLastFrameCollisionInfo();
GJKAlgorithm::GJKResult result = gjkAlgorithm.testCollision(narrowPhaseInfo, reportContacts);
lastFrameCollisionInfo->wasUsingGJK = true;
lastFrameCollisionInfo->wasUsingSAT = false;
assert(narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::CONVEX_POLYHEDRON ||
narrowPhaseInfo->collisionShape2->getType() == CollisionShapeType::CONVEX_POLYHEDRON);
assert(narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::CAPSULE ||
narrowPhaseInfo->collisionShape2->getType() == CollisionShapeType::CAPSULE);
// If we have found a contact point inside the margins (shallow penetration)
if (result == GJKAlgorithm::GJKResult::COLLIDE_IN_MARGIN) {
if (reportContacts) {
// GJK has found a shallow contact. If the face of the polyhedron mesh is orthogonal to the
// capsule inner segment and parallel to the contact point normal, we would like to create
// two contact points instead of a single one (as in the deep contact case with SAT algorithm)
// Get the contact point created by GJK
assert(narrowPhaseInfo->contactPoints.size() > 0);
ContactPointInfo*& contactPoint = narrowPhaseInfo->contactPoints[0];
bool isCapsuleShape1 = narrowPhaseInfo->collisionShape1->getType() == CollisionShapeType::CAPSULE;
// Get the collision shapes
const CapsuleShape* capsuleShape = static_cast<const CapsuleShape*>(isCapsuleShape1 ? narrowPhaseInfo->collisionShape1 : narrowPhaseInfo->collisionShape2);
const ConvexPolyhedronShape* polyhedron = static_cast<const ConvexPolyhedronShape*>(isCapsuleShape1 ? narrowPhaseInfo->collisionShape2 : narrowPhaseInfo->collisionShape1);
// For each face of the polyhedron
for (uint f = 0; f < polyhedron->getNbFaces(); f++) {
const Transform polyhedronToWorld = isCapsuleShape1 ? narrowPhaseInfo->shape2ToWorldTransform : narrowPhaseInfo->shape1ToWorldTransform;
const Transform capsuleToWorld = isCapsuleShape1 ? narrowPhaseInfo->shape1ToWorldTransform : narrowPhaseInfo->shape2ToWorldTransform;
// Get the face normal
const Vector3 faceNormal = polyhedron->getFaceNormal(f);
Vector3 faceNormalWorld = polyhedronToWorld.getOrientation() * faceNormal;
const Vector3 capsuleSegA(0, -capsuleShape->getHeight() * decimal(0.5), 0);
const Vector3 capsuleSegB(0, capsuleShape->getHeight() * decimal(0.5), 0);
Vector3 capsuleInnerSegmentDirection = capsuleToWorld.getOrientation() * (capsuleSegB - capsuleSegA);
capsuleInnerSegmentDirection.normalize();
bool isFaceNormalInDirectionOfContactNormal = faceNormalWorld.dot(contactPoint->normal) > decimal(0.0);
bool isFaceNormalInContactDirection = (isCapsuleShape1 && !isFaceNormalInDirectionOfContactNormal) || (!isCapsuleShape1 && isFaceNormalInDirectionOfContactNormal);
// If the polyhedron face normal is orthogonal to the capsule inner segment and parallel to the contact point normal and the face normal
// is in direction of the contact normal (from the polyhedron point of view).
if (isFaceNormalInContactDirection && areOrthogonalVectors(faceNormalWorld, capsuleInnerSegmentDirection)
&& areParallelVectors(faceNormalWorld, contactPoint->normal)) {
// Remove the previous contact point computed by GJK
narrowPhaseInfo->resetContactPoints();
const Transform capsuleToWorld = isCapsuleShape1 ? narrowPhaseInfo->shape1ToWorldTransform : narrowPhaseInfo->shape2ToWorldTransform;
const Transform polyhedronToCapsuleTransform = capsuleToWorld.getInverse() * polyhedronToWorld;
// Compute the end-points of the inner segment of the capsule
const Vector3 capsuleSegA(0, -capsuleShape->getHeight() * decimal(0.5), 0);
const Vector3 capsuleSegB(0, capsuleShape->getHeight() * decimal(0.5), 0);
// Convert the inner capsule segment points into the polyhedron local-space
const Transform capsuleToPolyhedronTransform = polyhedronToCapsuleTransform.getInverse();
const Vector3 capsuleSegAPolyhedronSpace = capsuleToPolyhedronTransform * capsuleSegA;
const Vector3 capsuleSegBPolyhedronSpace = capsuleToPolyhedronTransform * capsuleSegB;
const Vector3 separatingAxisCapsuleSpace = polyhedronToCapsuleTransform.getOrientation() * faceNormal;
if (isCapsuleShape1) {
faceNormalWorld = -faceNormalWorld;
}
// Compute and create two contact points
bool contactsFound = satAlgorithm.computeCapsulePolyhedronFaceContactPoints(f, capsuleShape->getRadius(), polyhedron, contactPoint->penetrationDepth,
polyhedronToCapsuleTransform, faceNormalWorld, separatingAxisCapsuleSpace,
capsuleSegAPolyhedronSpace, capsuleSegBPolyhedronSpace,
narrowPhaseInfo, isCapsuleShape1);
if (!contactsFound) {
return false;
}
break;
}
}
}
lastFrameCollisionInfo->wasUsingSAT = false;
lastFrameCollisionInfo->wasUsingGJK = false;
// Return true
return true;
}
// If we have overlap even without the margins (deep penetration)
if (result == GJKAlgorithm::GJKResult::INTERPENETRATE) {
// Run the SAT algorithm to find the separating axis and compute contact point
bool isColliding = satAlgorithm.testCollisionCapsuleVsConvexPolyhedron(narrowPhaseInfo, reportContacts);
lastFrameCollisionInfo->wasUsingGJK = false;
lastFrameCollisionInfo->wasUsingSAT = true;
return isColliding;
}
return false;
}