reactphysics3d/testbed/nanogui/ext/eigen/test/geo_alignedbox.cpp

199 lines
5.8 KiB
C++

// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include "main.h"
#include <Eigen/Geometry>
#include <Eigen/LU>
#include <Eigen/QR>
#include<iostream>
using namespace std;
// NOTE the following workaround was needed on some 32 bits builds to kill extra precision of x87 registers.
// It seems that it os not needed anymore, but let's keep it here, just in case...
template<typename T> EIGEN_DONT_INLINE
void kill_extra_precision(T& /* x */) {
// This one worked but triggered a warning:
/* eigen_assert((void*)(&x) != (void*)0); */
// An alternative could be:
/* volatile T tmp = x; */
/* x = tmp; */
}
template<typename BoxType> void alignedbox(const BoxType& _box)
{
/* this test covers the following files:
AlignedBox.h
*/
typedef typename BoxType::Index Index;
typedef typename BoxType::Scalar Scalar;
typedef typename NumTraits<Scalar>::Real RealScalar;
typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
const Index dim = _box.dim();
VectorType p0 = VectorType::Random(dim);
VectorType p1 = VectorType::Random(dim);
while( p1 == p0 ){
p1 = VectorType::Random(dim); }
RealScalar s1 = internal::random<RealScalar>(0,1);
BoxType b0(dim);
BoxType b1(VectorType::Random(dim),VectorType::Random(dim));
BoxType b2;
kill_extra_precision(b1);
kill_extra_precision(p0);
kill_extra_precision(p1);
b0.extend(p0);
b0.extend(p1);
VERIFY(b0.contains(p0*s1+(Scalar(1)-s1)*p1));
VERIFY(b0.contains(b0.center()));
VERIFY_IS_APPROX(b0.center(),(p0+p1)/Scalar(2));
(b2 = b0).extend(b1);
VERIFY(b2.contains(b0));
VERIFY(b2.contains(b1));
VERIFY_IS_APPROX(b2.clamp(b0), b0);
// intersection
BoxType box1(VectorType::Random(dim));
box1.extend(VectorType::Random(dim));
BoxType box2(VectorType::Random(dim));
box2.extend(VectorType::Random(dim));
VERIFY(box1.intersects(box2) == !box1.intersection(box2).isEmpty());
// alignment -- make sure there is no memory alignment assertion
BoxType *bp0 = new BoxType(dim);
BoxType *bp1 = new BoxType(dim);
bp0->extend(*bp1);
delete bp0;
delete bp1;
// sampling
for( int i=0; i<10; ++i )
{
VectorType r = b0.sample();
VERIFY(b0.contains(r));
}
}
template<typename BoxType>
void alignedboxCastTests(const BoxType& _box)
{
// casting
typedef typename BoxType::Index Index;
typedef typename BoxType::Scalar Scalar;
typedef Matrix<Scalar, BoxType::AmbientDimAtCompileTime, 1> VectorType;
const Index dim = _box.dim();
VectorType p0 = VectorType::Random(dim);
VectorType p1 = VectorType::Random(dim);
BoxType b0(dim);
b0.extend(p0);
b0.extend(p1);
const int Dim = BoxType::AmbientDimAtCompileTime;
typedef typename GetDifferentType<Scalar>::type OtherScalar;
AlignedBox<OtherScalar,Dim> hp1f = b0.template cast<OtherScalar>();
VERIFY_IS_APPROX(hp1f.template cast<Scalar>(),b0);
AlignedBox<Scalar,Dim> hp1d = b0.template cast<Scalar>();
VERIFY_IS_APPROX(hp1d.template cast<Scalar>(),b0);
}
void specificTest1()
{
Vector2f m; m << -1.0f, -2.0f;
Vector2f M; M << 1.0f, 5.0f;
typedef AlignedBox2f BoxType;
BoxType box( m, M );
Vector2f sides = M-m;
VERIFY_IS_APPROX(sides, box.sizes() );
VERIFY_IS_APPROX(sides[1], box.sizes()[1] );
VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff() );
VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff() );
VERIFY_IS_APPROX( 14.0f, box.volume() );
VERIFY_IS_APPROX( 53.0f, box.diagonal().squaredNorm() );
VERIFY_IS_APPROX( std::sqrt( 53.0f ), box.diagonal().norm() );
VERIFY_IS_APPROX( m, box.corner( BoxType::BottomLeft ) );
VERIFY_IS_APPROX( M, box.corner( BoxType::TopRight ) );
Vector2f bottomRight; bottomRight << M[0], m[1];
Vector2f topLeft; topLeft << m[0], M[1];
VERIFY_IS_APPROX( bottomRight, box.corner( BoxType::BottomRight ) );
VERIFY_IS_APPROX( topLeft, box.corner( BoxType::TopLeft ) );
}
void specificTest2()
{
Vector3i m; m << -1, -2, 0;
Vector3i M; M << 1, 5, 3;
typedef AlignedBox3i BoxType;
BoxType box( m, M );
Vector3i sides = M-m;
VERIFY_IS_APPROX(sides, box.sizes() );
VERIFY_IS_APPROX(sides[1], box.sizes()[1] );
VERIFY_IS_APPROX(sides[1], box.sizes().maxCoeff() );
VERIFY_IS_APPROX(sides[0], box.sizes().minCoeff() );
VERIFY_IS_APPROX( 42, box.volume() );
VERIFY_IS_APPROX( 62, box.diagonal().squaredNorm() );
VERIFY_IS_APPROX( m, box.corner( BoxType::BottomLeftFloor ) );
VERIFY_IS_APPROX( M, box.corner( BoxType::TopRightCeil ) );
Vector3i bottomRightFloor; bottomRightFloor << M[0], m[1], m[2];
Vector3i topLeftFloor; topLeftFloor << m[0], M[1], m[2];
VERIFY_IS_APPROX( bottomRightFloor, box.corner( BoxType::BottomRightFloor ) );
VERIFY_IS_APPROX( topLeftFloor, box.corner( BoxType::TopLeftFloor ) );
}
void test_geo_alignedbox()
{
for(int i = 0; i < g_repeat; i++)
{
CALL_SUBTEST_1( alignedbox(AlignedBox2f()) );
CALL_SUBTEST_2( alignedboxCastTests(AlignedBox2f()) );
CALL_SUBTEST_3( alignedbox(AlignedBox3f()) );
CALL_SUBTEST_4( alignedboxCastTests(AlignedBox3f()) );
CALL_SUBTEST_5( alignedbox(AlignedBox4d()) );
CALL_SUBTEST_6( alignedboxCastTests(AlignedBox4d()) );
CALL_SUBTEST_7( alignedbox(AlignedBox1d()) );
CALL_SUBTEST_8( alignedboxCastTests(AlignedBox1d()) );
CALL_SUBTEST_9( alignedbox(AlignedBox1i()) );
CALL_SUBTEST_10( alignedbox(AlignedBox2i()) );
CALL_SUBTEST_11( alignedbox(AlignedBox3i()) );
CALL_SUBTEST_14( alignedbox(AlignedBox<double,Dynamic>(4)) );
}
CALL_SUBTEST_12( specificTest1() );
CALL_SUBTEST_13( specificTest2() );
}