reactphysics3d/src/engine/PhysicsEngine.cpp
2011-11-13 17:49:03 +00:00

196 lines
8.2 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2012 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
// Libraries
#include "PhysicsEngine.h"
// We want to use the ReactPhysics3D namespace
using namespace reactphysics3d;
using namespace std;
// Constructor
PhysicsEngine::PhysicsEngine(PhysicsWorld* world, double timeStep = DEFAULT_TIMESTEP)
: world(world), timer(timeStep), collisionDetection(world), constraintSolver(world) {
assert(world);
assert(timeStep > 0.0);
}
// Destructor
PhysicsEngine::~PhysicsEngine() {
}
// Update the physics simulation
void PhysicsEngine::update() {
bool existCollision = false;
assert(timer.getIsRunning());
// Compute the time since the last update() call and update the timer
timer.update();
// Apply the gravity force to all bodies
applyGravity();
// While the time accumulator is not empty
while(timer.isPossibleToTakeStep()) {
existCollision = false;
// Compute the collision detection
if (collisionDetection.computeCollisionDetection()) {
existCollision = true;
// Solve constraints
constraintSolver.solve(timer.getTimeStep());
}
// Update the timer
timer.nextStep();
// Update the position and orientation of each body
updateAllBodiesMotion();
// Cleanup of the constraint solver
if (existCollision) {
constraintSolver.cleanup();
}
// Clear the added and removed bodies from last update() method call
world->clearAddedAndRemovedBodies();
}
// Compute and set the interpolation factor to all the bodies
setInterpolationFactorToAllBodies();
}
// Compute the motion of all bodies and update their positions and orientations
// First this method compute the vector V2 = V_constraint + V_forces + V1 where
// V_constraint = dt * (M^-1 * J^T * lambda) and V_forces = dt * (M^-1 * F_ext)
// V2 is the final velocity after the timestep and V1 is the velocity before the
// timestep.
// After having computed the velocity V2, this method will update the position
// and orientation of each body.
// This method uses the semi-implicit Euler method to update the position and
// orientation of the body
void PhysicsEngine::updateAllBodiesMotion() {
double dt = timer.getTimeStep();
Vector3 newLinearVelocity;
Vector3 newAngularVelocity;
// For each body of thephysics world
for (vector<RigidBody*>::iterator it=world->getRigidBodiesBeginIterator(); it != world->getRigidBodiesEndIterator(); ++it) {
RigidBody* rigidBody = *it;
assert(rigidBody);
// If the body is able to move
if (rigidBody->getIsMotionEnabled()) {
newLinearVelocity.setAllValues(0.0, 0.0, 0.0);
newAngularVelocity.setAllValues(0.0, 0.0, 0.0);
// If it's a constrained body
if (constraintSolver.isConstrainedBody(*it)) {
// Get the constrained linear and angular velocities from the constraint solver
newLinearVelocity = constraintSolver.getConstrainedLinearVelocityOfBody(*it);
newAngularVelocity = constraintSolver.getConstrainedAngularVelocityOfBody(*it);
}
// Compute V_forces = dt * (M^-1 * F_ext) which is the velocity of the body due to the
// external forces and torques.
newLinearVelocity += dt * rigidBody->getMassInverse() * rigidBody->getExternalForce();
newAngularVelocity += dt * rigidBody->getInertiaTensorInverseWorld() * rigidBody->getExternalTorque();
// Add the velocity V1 to the new velocity
newLinearVelocity += rigidBody->getLinearVelocity();
newAngularVelocity += rigidBody->getAngularVelocity();
// Update the position and the orientation of the body according to the new velocity
updatePositionAndOrientationOfBody(*it, newLinearVelocity, newAngularVelocity);
// Update the AABB of the rigid body
rigidBody->updateAABB();
}
}
}
// Update the position and orientation of a body
// Use the Semi-Implicit Euler (Sympletic Euler) method to compute the new position and the new
// orientation of the body
void PhysicsEngine::updatePositionAndOrientationOfBody(RigidBody* rigidBody, const Vector3& newLinVelocity, const Vector3& newAngVelocity) {
double dt = timer.getTimeStep();
assert(rigidBody);
// Update the old position and orientation of the body
rigidBody->updateOldTransform();
// Update the linear and angular velocity of the body
rigidBody->setLinearVelocity(newLinVelocity);
rigidBody->setAngularVelocity(newAngVelocity);
// Get current position and orientation of the body
const Vector3& currentPosition = rigidBody->getTransform().getPosition();
const Quaternion& currentOrientation = rigidBody->getTransform().getOrientation();
Vector3 newPosition = currentPosition + newLinVelocity * dt;
Quaternion newOrientation = currentOrientation + Quaternion(newAngVelocity.getX(), newAngVelocity.getY(), newAngVelocity.getZ(), 0) * currentOrientation * 0.5 * dt;
Transform newTransform(newPosition, newOrientation.getUnit());
rigidBody->setTransform(newTransform);
}
// Compute and set the interpolation factor to all bodies
void PhysicsEngine::setInterpolationFactorToAllBodies() {
// Compute the interpolation factor
double factor = timer.computeInterpolationFactor();
assert(factor >= 0.0 && factor <= 1.0);
// Set the factor to all bodies
for (vector<RigidBody*>::iterator it=world->getRigidBodiesBeginIterator(); it != world->getRigidBodiesEndIterator(); ++it) {
RigidBody* rigidBody = dynamic_cast<RigidBody*>(*it);
assert(rigidBody);
rigidBody->setInterpolationFactor(factor);
}
}
// Apply the gravity force to all bodies of the physics world
void PhysicsEngine::applyGravity() {
// For each body of the physics world
for (vector<RigidBody*>::iterator it=world->getRigidBodiesBeginIterator(); it != world->getRigidBodiesEndIterator(); ++it) {
RigidBody* rigidBody = dynamic_cast<RigidBody*>(*it);
assert(rigidBody);
// If the gravity force is on
if(world->getIsGravityOn()) {
// Apply the current gravity force to the body
rigidBody->setExternalForce(rigidBody->getMass() * world->getGravity());
}
}
}