git-svn-id: https://reactphysics3d.googlecode.com/svn/trunk@452 92aac97c-a6ce-11dd-a772-7fcde58d38e6
196 lines
8.2 KiB
C++
196 lines
8.2 KiB
C++
/********************************************************************************
|
|
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
|
|
* Copyright (c) 2010-2012 Daniel Chappuis *
|
|
*********************************************************************************
|
|
* *
|
|
* This software is provided 'as-is', without any express or implied warranty. *
|
|
* In no event will the authors be held liable for any damages arising from the *
|
|
* use of this software. *
|
|
* *
|
|
* Permission is granted to anyone to use this software for any purpose, *
|
|
* including commercial applications, and to alter it and redistribute it *
|
|
* freely, subject to the following restrictions: *
|
|
* *
|
|
* 1. The origin of this software must not be misrepresented; you must not claim *
|
|
* that you wrote the original software. If you use this software in a *
|
|
* product, an acknowledgment in the product documentation would be *
|
|
* appreciated but is not required. *
|
|
* *
|
|
* 2. Altered source versions must be plainly marked as such, and must not be *
|
|
* misrepresented as being the original software. *
|
|
* *
|
|
* 3. This notice may not be removed or altered from any source distribution. *
|
|
* *
|
|
********************************************************************************/
|
|
|
|
// Libraries
|
|
#include "PhysicsEngine.h"
|
|
|
|
// We want to use the ReactPhysics3D namespace
|
|
using namespace reactphysics3d;
|
|
using namespace std;
|
|
|
|
// Constructor
|
|
PhysicsEngine::PhysicsEngine(PhysicsWorld* world, double timeStep = DEFAULT_TIMESTEP)
|
|
: world(world), timer(timeStep), collisionDetection(world), constraintSolver(world) {
|
|
assert(world);
|
|
assert(timeStep > 0.0);
|
|
}
|
|
|
|
// Destructor
|
|
PhysicsEngine::~PhysicsEngine() {
|
|
|
|
}
|
|
|
|
// Update the physics simulation
|
|
void PhysicsEngine::update() {
|
|
bool existCollision = false;
|
|
|
|
assert(timer.getIsRunning());
|
|
|
|
// Compute the time since the last update() call and update the timer
|
|
timer.update();
|
|
|
|
// Apply the gravity force to all bodies
|
|
applyGravity();
|
|
|
|
// While the time accumulator is not empty
|
|
while(timer.isPossibleToTakeStep()) {
|
|
existCollision = false;
|
|
|
|
|
|
// Compute the collision detection
|
|
if (collisionDetection.computeCollisionDetection()) {
|
|
existCollision = true;
|
|
|
|
// Solve constraints
|
|
constraintSolver.solve(timer.getTimeStep());
|
|
}
|
|
|
|
// Update the timer
|
|
timer.nextStep();
|
|
|
|
// Update the position and orientation of each body
|
|
updateAllBodiesMotion();
|
|
|
|
// Cleanup of the constraint solver
|
|
if (existCollision) {
|
|
constraintSolver.cleanup();
|
|
}
|
|
|
|
// Clear the added and removed bodies from last update() method call
|
|
world->clearAddedAndRemovedBodies();
|
|
}
|
|
|
|
// Compute and set the interpolation factor to all the bodies
|
|
setInterpolationFactorToAllBodies();
|
|
}
|
|
|
|
// Compute the motion of all bodies and update their positions and orientations
|
|
// First this method compute the vector V2 = V_constraint + V_forces + V1 where
|
|
// V_constraint = dt * (M^-1 * J^T * lambda) and V_forces = dt * (M^-1 * F_ext)
|
|
// V2 is the final velocity after the timestep and V1 is the velocity before the
|
|
// timestep.
|
|
// After having computed the velocity V2, this method will update the position
|
|
// and orientation of each body.
|
|
// This method uses the semi-implicit Euler method to update the position and
|
|
// orientation of the body
|
|
void PhysicsEngine::updateAllBodiesMotion() {
|
|
double dt = timer.getTimeStep();
|
|
Vector3 newLinearVelocity;
|
|
Vector3 newAngularVelocity;
|
|
|
|
// For each body of thephysics world
|
|
for (vector<RigidBody*>::iterator it=world->getRigidBodiesBeginIterator(); it != world->getRigidBodiesEndIterator(); ++it) {
|
|
|
|
RigidBody* rigidBody = *it;
|
|
assert(rigidBody);
|
|
|
|
// If the body is able to move
|
|
if (rigidBody->getIsMotionEnabled()) {
|
|
newLinearVelocity.setAllValues(0.0, 0.0, 0.0);
|
|
newAngularVelocity.setAllValues(0.0, 0.0, 0.0);
|
|
|
|
// If it's a constrained body
|
|
if (constraintSolver.isConstrainedBody(*it)) {
|
|
// Get the constrained linear and angular velocities from the constraint solver
|
|
newLinearVelocity = constraintSolver.getConstrainedLinearVelocityOfBody(*it);
|
|
newAngularVelocity = constraintSolver.getConstrainedAngularVelocityOfBody(*it);
|
|
}
|
|
|
|
// Compute V_forces = dt * (M^-1 * F_ext) which is the velocity of the body due to the
|
|
// external forces and torques.
|
|
newLinearVelocity += dt * rigidBody->getMassInverse() * rigidBody->getExternalForce();
|
|
newAngularVelocity += dt * rigidBody->getInertiaTensorInverseWorld() * rigidBody->getExternalTorque();
|
|
|
|
// Add the velocity V1 to the new velocity
|
|
newLinearVelocity += rigidBody->getLinearVelocity();
|
|
newAngularVelocity += rigidBody->getAngularVelocity();
|
|
|
|
// Update the position and the orientation of the body according to the new velocity
|
|
updatePositionAndOrientationOfBody(*it, newLinearVelocity, newAngularVelocity);
|
|
|
|
// Update the AABB of the rigid body
|
|
rigidBody->updateAABB();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Update the position and orientation of a body
|
|
// Use the Semi-Implicit Euler (Sympletic Euler) method to compute the new position and the new
|
|
// orientation of the body
|
|
void PhysicsEngine::updatePositionAndOrientationOfBody(RigidBody* rigidBody, const Vector3& newLinVelocity, const Vector3& newAngVelocity) {
|
|
double dt = timer.getTimeStep();
|
|
|
|
assert(rigidBody);
|
|
|
|
// Update the old position and orientation of the body
|
|
rigidBody->updateOldTransform();
|
|
|
|
// Update the linear and angular velocity of the body
|
|
rigidBody->setLinearVelocity(newLinVelocity);
|
|
rigidBody->setAngularVelocity(newAngVelocity);
|
|
|
|
// Get current position and orientation of the body
|
|
const Vector3& currentPosition = rigidBody->getTransform().getPosition();
|
|
const Quaternion& currentOrientation = rigidBody->getTransform().getOrientation();
|
|
|
|
Vector3 newPosition = currentPosition + newLinVelocity * dt;
|
|
Quaternion newOrientation = currentOrientation + Quaternion(newAngVelocity.getX(), newAngVelocity.getY(), newAngVelocity.getZ(), 0) * currentOrientation * 0.5 * dt;
|
|
Transform newTransform(newPosition, newOrientation.getUnit());
|
|
rigidBody->setTransform(newTransform);
|
|
}
|
|
|
|
// Compute and set the interpolation factor to all bodies
|
|
void PhysicsEngine::setInterpolationFactorToAllBodies() {
|
|
// Compute the interpolation factor
|
|
double factor = timer.computeInterpolationFactor();
|
|
assert(factor >= 0.0 && factor <= 1.0);
|
|
|
|
// Set the factor to all bodies
|
|
for (vector<RigidBody*>::iterator it=world->getRigidBodiesBeginIterator(); it != world->getRigidBodiesEndIterator(); ++it) {
|
|
|
|
RigidBody* rigidBody = dynamic_cast<RigidBody*>(*it);
|
|
assert(rigidBody);
|
|
|
|
rigidBody->setInterpolationFactor(factor);
|
|
}
|
|
}
|
|
|
|
// Apply the gravity force to all bodies of the physics world
|
|
void PhysicsEngine::applyGravity() {
|
|
|
|
// For each body of the physics world
|
|
for (vector<RigidBody*>::iterator it=world->getRigidBodiesBeginIterator(); it != world->getRigidBodiesEndIterator(); ++it) {
|
|
|
|
RigidBody* rigidBody = dynamic_cast<RigidBody*>(*it);
|
|
assert(rigidBody);
|
|
|
|
// If the gravity force is on
|
|
if(world->getIsGravityOn()) {
|
|
// Apply the current gravity force to the body
|
|
rigidBody->setExternalForce(rigidBody->getMass() * world->getGravity());
|
|
}
|
|
}
|
|
}
|