reactphysics3d/src/mathematics/Matrix3x3.h
2011-11-13 17:49:03 +00:00

243 lines
14 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2012 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef MATRIX3X3_H
#define MATRIX3X3_H
// Libraries
#include <cassert>
#include "Vector3.h"
// ReactPhysics3D namespace
namespace reactphysics3d {
/* -------------------------------------------------------------------
Class Matrix3x3 :
This class represents a 3x3 matrix.
-------------------------------------------------------------------
*/
class Matrix3x3 {
private :
double array[3][3]; // Array with the values of the matrix
public :
Matrix3x3(); // Constructor
Matrix3x3(double value); // Constructor
Matrix3x3(double a1, double a2, double a3, double b1, double b2, double b3,
double c1, double c2, double c3); // Constructor
virtual ~Matrix3x3(); // Destructor
double getValue(int i, int j) const; // Get a value in the matrix
void setValue(int i, int j, double value); // Set a value in the matrix
void setAllValues(double a1, double a2, double a3, double b1, double b2, double b3,
double c1, double c2, double c3); // Set all the values in the matrix
Vector3 getColumn(int i) const; // Return a column
Matrix3x3 getTranspose() const; // Return the transpose matrix
double getDeterminant() const; // Return the determinant of the matrix
double getTrace() const; // Return the trace of the matrix
Matrix3x3 getInverse() const; // Return the inverse matrix
Matrix3x3 getAbsoluteMatrix() const; // Return the matrix with absolute values
void setToIdentity(); // Set the matrix to the identity matrix
static Matrix3x3 identity(); // Return the 3x3 identity matrix
// --- Overloaded operators --- //
friend Matrix3x3 operator+(const Matrix3x3& matrix1, const Matrix3x3& matrix2); // Overloaded operator for addition
friend Matrix3x3 operator-(const Matrix3x3& matrix1, const Matrix3x3& matrix2); // Overloaded operator for substraction
friend Matrix3x3 operator-(const Matrix3x3& matrix); // Overloaded operator for the negative of the matrix
friend Matrix3x3 operator*(double nb, const Matrix3x3& matrix); // Overloaded operator for multiplication with a number
friend Matrix3x3 operator*(const Matrix3x3& matrix, double nb); // Overloaded operator for multiplication with a matrix
friend Matrix3x3 operator*(const Matrix3x3& matrix1, const Matrix3x3& matrix2); // Overloaded operator for matrix multiplication
friend Vector3 operator*(const Matrix3x3& matrix, const Vector3& vector); // Overloaded operator for multiplication with a vector
bool operator==(const Matrix3x3& matrix) const; // Overloaded operator for equality condition
bool operator!= (const Matrix3x3& matrix) const; // Overloaded operator for the is different condition
Matrix3x3& operator+=(const Matrix3x3& matrix); // Overloaded operator for addition with assignment
Matrix3x3& operator-=(const Matrix3x3& matrix); // Overloaded operator for substraction with assignment
Matrix3x3& operator*=(double nb); // Overloaded operator for multiplication with a number with assignment
};
// Method to get a value in the matrix (inline)
inline double Matrix3x3::getValue(int i, int j) const {
assert(i>=0 && i<3 && j>=0 && j<3);
return array[i][j];
}
// Method to set a value in the matrix (inline)
inline void Matrix3x3::setValue(int i, int j, double value) {
assert(i>=0 && i<3 && j>=0 && j<3);
array[i][j] = value;
}
// Method to set all the values in the matrix
inline void Matrix3x3::setAllValues(double a1, double a2, double a3, double b1, double b2, double b3,
double c1, double c2, double c3) {
array[0][0] = a1; array[0][1] = a2; array[0][2] = a3;
array[1][0] = b1; array[1][1] = b2; array[1][2] = b3;
array[2][0] = c1; array[2][1] = c2; array[2][2] = c3;
}
// Return a column
inline Vector3 Matrix3x3::getColumn(int i) const {
assert(i>= 0 && i<3);
return Vector3(array[0][i], array[1][i], array[2][i]);
}
// Return the transpose matrix
inline Matrix3x3 Matrix3x3::getTranspose() const {
// Return the transpose matrix
return Matrix3x3(array[0][0], array[1][0], array[2][0],
array[0][1], array[1][1], array[2][1],
array[0][2], array[1][2], array[2][2]);
}
// Return the determinant of the matrix
inline double Matrix3x3::getDeterminant() const {
// Compute and return the determinant of the matrix
return (array[0][0]*(array[1][1]*array[2][2]-array[2][1]*array[1][2]) - array[0][1]*(array[1][0]*array[2][2]-array[2][0]*array[1][2]) +
array[0][2]*(array[1][0]*array[2][1]-array[2][0]*array[1][1]));
}
// Return the trace of the matrix
inline double Matrix3x3::getTrace() const {
// Compute and return the trace
return (array[0][0] + array[1][1] + array[2][2]);
}
// Set the matrix to the identity matrix
inline void Matrix3x3::setToIdentity() {
array[0][0] = 1.0; array[0][1] = 0.0; array[0][2] = 0.0;
array[1][0] = 0.0; array[1][1] = 1.0; array[1][2] = 0.0;
array[2][0] = 0.0; array[2][1] = 0.0; array[2][2] = 1.0;
}
// Return the 3x3 identity matrix
inline Matrix3x3 Matrix3x3::identity() {
// Return the isdentity matrix
return Matrix3x3(1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0);
}
// Return the matrix with absolute values
inline Matrix3x3 Matrix3x3::getAbsoluteMatrix() const {
return Matrix3x3(fabs(array[0][0]), fabs(array[0][1]), fabs(array[0][2]),
fabs(array[1][0]), fabs(array[1][1]), fabs(array[1][2]),
fabs(array[2][0]), fabs(array[2][1]), fabs(array[2][2]));
}
// Overloaded operator for addition
inline Matrix3x3 operator+(const Matrix3x3& matrix1, const Matrix3x3& matrix2) {
return Matrix3x3(matrix1.array[0][0] + matrix2.array[0][0], matrix1.array[0][1] + matrix2.array[0][1], matrix1.array[0][2] + matrix2.array[0][2],
matrix1.array[1][0] + matrix2.array[1][0], matrix1.array[1][1] + matrix2.array[1][1], matrix1.array[1][2] + matrix2.array[1][2],
matrix1.array[2][0] + matrix2.array[2][0], matrix1.array[2][1] + matrix2.array[2][1], matrix1.array[2][2] + matrix2.array[2][2]);
}
// Overloaded operator for substraction
inline Matrix3x3 operator-(const Matrix3x3& matrix1, const Matrix3x3& matrix2) {
return Matrix3x3(matrix1.array[0][0] - matrix2.array[0][0], matrix1.array[0][1] - matrix2.array[0][1], matrix1.array[0][2] - matrix2.array[0][2],
matrix1.array[1][0] - matrix2.array[1][0], matrix1.array[1][1] - matrix2.array[1][1], matrix1.array[1][2] - matrix2.array[1][2],
matrix1.array[2][0] - matrix2.array[2][0], matrix1.array[2][1] - matrix2.array[2][1], matrix1.array[2][2] - matrix2.array[2][2]);
}
// Overloaded operator for the negative of the matrix
inline Matrix3x3 operator-(const Matrix3x3& matrix) {
return Matrix3x3(-matrix.array[0][0], -matrix.array[0][1], -matrix.array[0][2],
-matrix.array[1][0], -matrix.array[1][1], -matrix.array[1][2],
-matrix.array[2][0], -matrix.array[2][1], -matrix.array[2][2]);
}
// Overloaded operator for multiplication with a number
inline Matrix3x3 operator*(double nb, const Matrix3x3& matrix) {
return Matrix3x3(matrix.array[0][0] * nb, matrix.array[0][1] * nb, matrix.array[0][2] * nb,
matrix.array[1][0] * nb, matrix.array[1][1] * nb, matrix.array[1][2] * nb,
matrix.array[2][0] * nb, matrix.array[2][1] * nb, matrix.array[2][2] * nb);
}
// Overloaded operator for multiplication with a matrix
inline Matrix3x3 operator*(const Matrix3x3& matrix, double nb) {
return nb * matrix;
}
// Overloaded operator for matrix multiplication
inline Matrix3x3 operator*(const Matrix3x3& matrix1, const Matrix3x3& matrix2) {
return Matrix3x3(matrix1.array[0][0]*matrix2.array[0][0] + matrix1.array[0][1]*matrix2.array[1][0] + matrix1.array[0][2]*matrix2.array[2][0],
matrix1.array[0][0]*matrix2.array[0][1] + matrix1.array[0][1]*matrix2.array[1][1] + matrix1.array[0][2]*matrix2.array[2][1],
matrix1.array[0][0]*matrix2.array[0][2] + matrix1.array[0][1]*matrix2.array[1][2] + matrix1.array[0][2]*matrix2.array[2][2],
matrix1.array[1][0]*matrix2.array[0][0] + matrix1.array[1][1]*matrix2.array[1][0] + matrix1.array[1][2]*matrix2.array[2][0],
matrix1.array[1][0]*matrix2.array[0][1] + matrix1.array[1][1]*matrix2.array[1][1] + matrix1.array[1][2]*matrix2.array[2][1],
matrix1.array[1][0]*matrix2.array[0][2] + matrix1.array[1][1]*matrix2.array[1][2] + matrix1.array[1][2]*matrix2.array[2][2],
matrix1.array[2][0]*matrix2.array[0][0] + matrix1.array[2][1]*matrix2.array[1][0] + matrix1.array[2][2]*matrix2.array[2][0],
matrix1.array[2][0]*matrix2.array[0][1] + matrix1.array[2][1]*matrix2.array[1][1] + matrix1.array[2][2]*matrix2.array[2][1],
matrix1.array[2][0]*matrix2.array[0][2] + matrix1.array[2][1]*matrix2.array[1][2] + matrix1.array[2][2]*matrix2.array[2][2]);
}
// Overloaded operator for multiplication with a vector
inline Vector3 operator*(const Matrix3x3& matrix, const Vector3& vector) {
return Vector3(matrix.array[0][0]*vector.getX() + matrix.array[0][1]*vector.getY() + matrix.array[0][2]*vector.getZ(),
matrix.array[1][0]*vector.getX() + matrix.array[1][1]*vector.getY() + matrix.array[1][2]*vector.getZ(),
matrix.array[2][0]*vector.getX() + matrix.array[2][1]*vector.getY() + matrix.array[2][2]*vector.getZ());
}
// Overloaded operator for equality condition
inline bool Matrix3x3::operator==(const Matrix3x3& matrix) const {
return (array[0][0] == matrix.array[0][0] && array[0][1] == matrix.array[0][1] && array[0][2] == matrix.array[0][2] &&
array[1][0] == matrix.array[1][0] && array[1][1] == matrix.array[1][1] && array[1][2] == matrix.array[1][2] &&
array[2][0] == matrix.array[2][0] && array[2][1] == matrix.array[2][1] && array[2][2] == matrix.array[2][2]);
}
// Overloaded operator for the is different condition
inline bool Matrix3x3::operator!= (const Matrix3x3& matrix) const {
return !(*this == matrix);
}
// Overloaded operator for addition with assignment
inline Matrix3x3& Matrix3x3::operator+=(const Matrix3x3& matrix) {
array[0][0] += matrix.array[0][0]; array[0][1] += matrix.array[0][1]; array[0][2] += matrix.array[0][2];
array[1][0] += matrix.array[1][0]; array[1][1] += matrix.array[1][1]; array[1][2] += matrix.array[1][2];
array[2][0] += matrix.array[2][0]; array[2][1] += matrix.array[2][1]; array[2][2] += matrix.array[2][2];
return *this;
}
// Overloaded operator for substraction with assignment
inline Matrix3x3& Matrix3x3::operator-=(const Matrix3x3& matrix) {
array[0][0] -= matrix.array[0][0]; array[0][1] -= matrix.array[0][1]; array[0][2] -= matrix.array[0][2];
array[1][0] -= matrix.array[1][0]; array[1][1] -= matrix.array[1][1]; array[1][2] -= matrix.array[1][2];
array[2][0] -= matrix.array[2][0]; array[2][1] -= matrix.array[2][1]; array[2][2] -= matrix.array[2][2];
return *this;
}
// Overloaded operator for multiplication with a number with assignment
inline Matrix3x3& Matrix3x3::operator*=(double nb) {
array[0][0] *= nb; array[0][1] *= nb; array[0][2] *= nb;
array[1][0] *= nb; array[1][1] *= nb; array[1][2] *= nb;
array[2][0] *= nb; array[2][1] *= nb; array[2][2] *= nb;
return *this;
}
} // End of the ReactPhysics3D namespace
#endif