reactphysics3d/src/memory/MemoryPool.h
2011-11-13 17:49:03 +00:00

191 lines
7.7 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010-2012 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef MEMORY_POOL_H
#define MEMORY_POOL_H
// Libraries
#include "../constants.h"
#include <cstddef>
#include <cstdlib>
#include <cassert>
#include <new>
// TODO : Check that casting is done correctly in this class using
// C++ cast operator like reinterpret_cast<>, ...
// ReactPhysics3D namespace
namespace reactphysics3d {
/* -------------------------------------------------------------------
Class MemoryPool :
This class represents a memory pool that allows us to allocate
dynamic memory at the beginning of the application in order to
avoid memory fragmentation and also a large number of allocation
and deallocation.
-------------------------------------------------------------------
*/
template<class T>
class MemoryPool {
private:
// Unit of memory
struct Unit {
struct Unit* pNext; // Pointer to the next memory unit
struct Unit* pPrevious; // Pointer to the previous memory unit
};
void* pMemoryBlock; // Pointer to the whole memory block
struct Unit* pAllocatedLinkedList; // Pointer to the linked list of allocated memory units
struct Unit* pFreeLinkedList; // Pointer to the linked list of free memory units
size_t memorySize; // Total allocated memory in the pool
const uint maxNbObjects; // Maximum number of objects in the pool
uint currentNbObjects; // Current number of objects in the pool
public:
MemoryPool(uint nbObjectsToAllocate) throw(std::bad_alloc); // Constructor
~MemoryPool(); // Destructor
uint getMaxNbObjects() const; // Return the maximum number of objects allowed in the pool
uint getCurrentNbObjects() const; // Return the current number of objects in the pool
void* allocateObject(); // Return a pointer to an memory allocated location to store a new object
void freeObject(void* pObjectToFree); // Tell the pool that an object doesn't need to be store in the pool anymore
};
// Constructor
// Allocate a large block of memory in order to contain
// a given number of object of the template type T
template<class T>
MemoryPool<T>::MemoryPool(uint nbObjectsToAllocate) throw(std::bad_alloc)
: currentNbObjects(0), maxNbObjects(nbObjectsToAllocate) {
pMemoryBlock = NULL;
pAllocatedLinkedList = NULL;
pFreeLinkedList = NULL;
// Compute the total memory size that need to be allocated
memorySize = nbObjectsToAllocate * (sizeof(struct Unit) + sizeof(T));
// Allocate the whole memory block
pMemoryBlock = malloc(memorySize);
// Check that the allocation didn't fail
if (!pMemoryBlock) throw std::bad_alloc();
// For each allocated memory unit
for (uint i=0; i<nbObjectsToAllocate; i++) {
// Get the adress of a memory unit
struct Unit* currentUnit = (struct Unit*)( (char*)pMemoryBlock + i * (sizeof(T) + sizeof(struct Unit)) );
currentUnit->pPrevious = NULL;
currentUnit->pNext = pFreeLinkedList;
if (pFreeLinkedList) {
pFreeLinkedList->pPrevious = currentUnit;
}
pFreeLinkedList = currentUnit;
}
}
// Destructor
// Deallocate the block of memory that has been allocated previously
template<class T>
MemoryPool<T>::~MemoryPool() {
// Release the whole memory block
free(pMemoryBlock);
}
// Return a pointer to an memory allocated location to store a new object
// This method does not allocate memory because it has already been done at the
// beginning but it returns a pointer to a location in the allocated block of
// memory where a new object can be stored
template<class T>
void* MemoryPool<T>::allocateObject() {
// If no memory unit is available in the current allocated memory block
assert(currentNbObjects < maxNbObjects);
assert(pFreeLinkedList);
struct Unit* currentUnit = pFreeLinkedList;
pFreeLinkedList = currentUnit->pNext;
if (pFreeLinkedList) {
pFreeLinkedList->pPrevious = NULL;
}
currentUnit->pNext = pAllocatedLinkedList;
if (pAllocatedLinkedList) {
pAllocatedLinkedList->pPrevious = currentUnit;
}
pAllocatedLinkedList = currentUnit;
currentNbObjects++;
// Return a pointer to the allocated memory unit
return (void*)((char*)currentUnit + sizeof(struct Unit));
}
// Tell the pool that an object doesn't need to be store in the pool anymore
// This method does not deallocate memory because it will be done only at the
// end but it informs the memory pool that an object that was stored in the heap
// does not need to be stored anymore and therefore we can use the corresponding
// location in the pool for another object
template<class T>
void MemoryPool<T>::freeObject(void* pObjectToFree) {
// The pointer location must be inside the memory block
assert(pMemoryBlock<pObjectToFree && pObjectToFree<(void*)((char*)pMemoryBlock + memorySize));
struct Unit* currentUnit = (struct Unit*)((char*)pObjectToFree - sizeof(struct Unit));
pAllocatedLinkedList = currentUnit->pNext;
if (pAllocatedLinkedList) {
pAllocatedLinkedList->pPrevious = NULL;
}
currentUnit->pNext = pFreeLinkedList;
if (pFreeLinkedList) {
pFreeLinkedList->pPrevious = currentUnit;
}
pFreeLinkedList = currentUnit;
currentNbObjects--;
}
// Return the maximum number of objects allowed in the pool
template<class T>
uint MemoryPool<T>::getMaxNbObjects() const {
return maxNbObjects;
}
// Return the current number of objects in the pool
template<class T>
uint MemoryPool<T>::getCurrentNbObjects() const {
return currentNbObjects;
}
}
#endif