reactphysics3d/sources/mathematics/Vector.cpp
chappuis.daniel db5ff8ec4a Change in the repository structure
git-svn-id: https://reactphysics3d.googlecode.com/svn/trunk@392 92aac97c-a6ce-11dd-a772-7fcde58d38e6
2010-09-09 21:09:47 +00:00

267 lines
9.1 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2010 Daniel Chappuis *
*********************************************************************************
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy *
* of this software and associated documentation files (the "Software"), to deal *
* in the Software without restriction, including without limitation the rights *
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell *
* copies of the Software, and to permit persons to whom the Software is *
* furnished to do so, subject to the following conditions: *
* *
* The above copyright notice and this permission notice shall be included in *
* all copies or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE *
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER *
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, *
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN *
* THE SOFTWARE. *
********************************************************************************/
// Libraries
#include "Vector.h"
// Namespaces
using namespace reactphysics3d;
// Constructor without argument
Vector::Vector()
:nbComponent(0) {
tab = 0;
}
// Constructor of the class Vector
Vector::Vector(int n) throw(std::invalid_argument) {
// Check the argument
if (n > 0) {
// Create the array that contains the values of the vector
nbComponent = n;
tab = new double[nbComponent];
// TODO : Remove this initialization
// Fill the array with zero's value
for(int i=0; i<nbComponent; ++i) {
tab[i] = 0.0;
}
}
else {
// Throw an exception because of the wrong argument
throw std::invalid_argument("Exception : The size of the vector has to be positive !");
}
}
// Copy-constructor of the class Vector
Vector::Vector(const Vector& vector) {
nbComponent = vector.nbComponent;
tab = new double[nbComponent];
// Fill the array with the value of the vector
for (int i=0; i<nbComponent; ++i) {
tab[i] = vector.tab[i];
}
}
// Conversion from Vector3D to Vector
Vector::Vector(const Vector3D& vector3d) {
nbComponent = 3;
tab = new double[3];
tab[0] = vector3d.getX();
tab[1] = vector3d.getY();
tab[2] = vector3d.getZ();
}
// Destructor of the class Vector
Vector::~Vector() {
// Erase the array with the values of the vector
delete [] tab;
}
// Return the corresponding unit vector
Vector Vector::getUnit() const throw(MathematicsException) {
double lengthVector = length();
// Check if the length of the vector is equal to zero
if (lengthVector!= 0) {
double lengthInv = 1.0 / lengthVector;
Vector unitVector(nbComponent);
// Compute the unit vector
for(int i=0; i<nbComponent; ++i) {
unitVector.setValue(i, getValue(i) * lengthInv);
}
// Return the unit vector
return unitVector;
}
else {
// Throw an exception because the length of the vector is zero
throw MathematicsException("MathematicsException : Impossible to compute the unit vector because the length of the vector is zero");
}
}
void Vector::setVector(const Vector& vector) {
assert(nbComponent == vector.nbComponent);
for (int i=0; i<nbComponent; i++) {
tab[i] = vector.tab[i];
}
}
// Method to compute the scalar product of two vectors
double Vector::scalarProduct(const Vector& vector) const throw(MathematicsException) {
// Check the sizes of the two vectors
if (nbComponent == vector.nbComponent) {
double result = 0.0;
// Compute the scalar product
for (int i=0; i<nbComponent; ++i) {
result = result + vector.tab[i] * tab[i];
}
// Return the result of the scalar product
return result;
}
else {
// Throw an exception because the two vectors haven't the same size
throw MathematicsException("MathematicsException : Impossible to compute the scalar product because the vectors haven't the same size");
}
}
// Method to compute the cross product of two vectors
Vector Vector::crossProduct(const Vector& vector) const throw(MathematicsException) {
// Check if the vectors have 3 components
if (nbComponent == 3 && vector.nbComponent == 3) {
Vector result(3);
// Compute the cross product
result.tab[0] = tab[1] * vector.tab[2] - tab[2] * vector.tab[1];
result.tab[1] = tab[2] * vector.tab[0] - tab[0] * vector.tab[2];
result.tab[2] = tab[0] * vector.tab[1] - tab[1] * vector.tab[0];
// Return the result of the cross product
return result;
}
else {
// Throw an exception because the vectors haven't three components
throw MathematicsException("MathematicsException : Impossible to compute the cross product because the vectors haven't 3 components");
}
}
void Vector::changeSize(uint newSize) {
if (tab) {
delete[] tab;
}
nbComponent = newSize;
tab = new double[nbComponent];
// Fill the array with the value of the vector
for (int i=0; i<nbComponent; ++i) {
tab[i] = 0.0;
}
}
// Overloaded operator for addition
Vector Vector::operator+(const Vector& vector) const throw(MathematicsException) {
// Check the size of the two vectors
if (nbComponent == vector.nbComponent) {
Vector sum(nbComponent);
// Compute the sum of the two vectors
for (int i=0; i<nbComponent; ++i) {
sum.setValue(i, vector.tab[i] + tab[i]);
}
// Return the sum vector
return sum;
}
else {
// Throw an exception because the sizes of the two vectors aren't the same
throw MathematicsException("MathematicsException : Impossible two sum the two vectors because the sizes aren't the same !");
}
}
// Overloaded operator for substraction
Vector Vector::operator-(const Vector& vector) const throw(MathematicsException) {
// Check the size of the two vectors
if (nbComponent == vector.nbComponent) {
Vector substraction(nbComponent);
// Compute the subraction of the two vectors
for (int i=0; i<nbComponent; ++i) {
substraction.setValue(i, tab[i] - vector.tab[i]);
}
// Return the subraction vector
return substraction;
}
else {
// Throw an exception because the sizes of the two vectors aren't the same
throw MathematicsException("MathematicsException : Impossible two substract the two vectors because the sizes aren't the same !");
}
}
// Overloaded operator for multiplication with a number
Vector Vector::operator*(double number) const {
Vector result(nbComponent);
// Compute the multiplication
for (int i=0; i<nbComponent; ++i) {
result.setValue(i, number * tab[i]);
}
// Return the result vector
return result;
}
// Overloaded operator for assigment to a Vector
Vector& Vector::operator=(const Vector& vector) throw(MathematicsException) {
// Check for self-assignment
if (this == &vector) {
return *this;
}
// Check the size of the vectors
if (nbComponent == vector.nbComponent) {
// Check for self-assignment
if (this != &vector) {
for (int i=0; i<nbComponent; ++i) {
tab[i] = vector.tab[i];
}
}
// Return a reference to the vector
return *this;
}
else {
// Throw an exception because the sizes of the vectors aren't the same
throw MathematicsException("MathematicsException : The assigment to a Vector is impossible because the size of the vectors aren't the same");
}
}
// Overloaded operator for the equality condition
bool Vector::operator==(const Vector& vector) const throw(MathematicsException) {
// Check if the sizes of the vectors are compatible
if (nbComponent == vector.nbComponent) {
for (int i=0; i<nbComponent; ++i) {
if (tab[i] != vector.tab[i]) {
return false;
}
}
return true;
}
else {
// Throw an exception because the sizes of the vectors aren't the same
throw MathematicsException("MathematicsException : Impossible to check if the vectors are equal because they don't have the same size");
}
}