reactphysics3d/src/collision/ContactManifoldSet.h

167 lines
6.2 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://www.reactphysics3d.com *
* Copyright (c) 2010-2018 Daniel Chappuis *
*********************************************************************************
* *
* This software is provided 'as-is', without any express or implied warranty. *
* In no event will the authors be held liable for any damages arising from the *
* use of this software. *
* *
* Permission is granted to anyone to use this software for any purpose, *
* including commercial applications, and to alter it and redistribute it *
* freely, subject to the following restrictions: *
* *
* 1. The origin of this software must not be misrepresented; you must not claim *
* that you wrote the original software. If you use this software in a *
* product, an acknowledgment in the product documentation would be *
* appreciated but is not required. *
* *
* 2. Altered source versions must be plainly marked as such, and must not be *
* misrepresented as being the original software. *
* *
* 3. This notice may not be removed or altered from any source distribution. *
* *
********************************************************************************/
#ifndef REACTPHYSICS3D_CONTACT_MANIFOLD_SET_H
#define REACTPHYSICS3D_CONTACT_MANIFOLD_SET_H
// Libraries
#include "configuration.h"
namespace reactphysics3d {
// Declarations
class ContactManifold;
class ContactManifoldInfo;
class ProxyShape;
class MemoryAllocator;
struct WorldSettings;
struct NarrowPhaseInfoBatch;
struct Vector3;
class CollisionShape;
class Transform;
// Constants
const int MAX_MANIFOLDS_IN_CONTACT_MANIFOLD_SET = 3; // Maximum number of contact manifolds in the set
const int CONTACT_CUBEMAP_FACE_NB_SUBDIVISIONS = 3; // N Number for the N x N subdivisions of the cubemap
// Class ContactManifoldSet
/**
* This class represents a set of one or several contact manifolds. Typically a
* convex/convex collision will have a set with a single manifold and a convex-concave
* collision can have more than one manifolds. Note that a contact manifold can
* contains several contact points.
*/
class ContactManifoldSet {
private:
// -------------------- Attributes -------------------- //
/// Maximum number of contact manifolds in the set
int mNbMaxManifolds;
/// Current number of contact manifolds in the set
int mNbManifolds;
/// Pointer to the first proxy shape of the contact
ProxyShape* mShape1;
/// Pointer to the second proxy shape of the contact
ProxyShape* mShape2;
/// Reference to the memory allocator for the contact manifolds
MemoryAllocator& mMemoryAllocator;
/// Contact manifolds of the set
ContactManifold* mManifolds;
/// World settings
const WorldSettings& mWorldSettings;
// -------------------- Methods -------------------- //
/// Create a new contact manifold and add it to the set
ContactManifold* createManifold();
// Return the contact manifold with a similar contact normal.
ContactManifold* selectManifoldWithSimilarNormal(const Vector3& contactNormal) const;
/// Remove a contact manifold that is the least optimal (smaller penetration depth)
void removeNonOptimalManifold();
/// Return the maximum number of contact manifolds allowed between to collision shapes
int computeNbMaxContactManifolds(const CollisionShape* shape1, const CollisionShape* shape2);
/// Clear the contact manifold set
void clear();
/// Delete a contact manifold
void removeManifold(ContactManifold* manifold);
public:
// -------------------- Methods -------------------- //
/// Constructor
ContactManifoldSet(ProxyShape* shape1, ProxyShape* shape2,
MemoryAllocator& memoryAllocator, const WorldSettings& worldSettings);
/// Destructor
~ContactManifoldSet();
/// Add the contact points from the narrow phase
void addContactPoints(const NarrowPhaseInfoBatch& narrowPhaseInfoBatch, uint batchIndex);
/// Return the first proxy shape
ProxyShape* getShape1() const;
/// Return the second proxy shape
ProxyShape* getShape2() const;
/// Return the number of manifolds in the set
int getNbContactManifolds() const;
/// Return a pointer to the first element of the linked-list of contact manifolds
ContactManifold* getContactManifolds() const;
/// Make all the contact manifolds and contact points obsolete
void makeContactsObsolete();
/// Return the total number of contact points in the set of manifolds
int getTotalNbContactPoints() const;
/// Clear the obsolete contact manifolds and contact points
void clearObsoleteManifoldsAndContactPoints();
// Remove some contact manifolds and contact points if there are too many of them
void reduce();
};
// Return the first proxy shape
inline ProxyShape* ContactManifoldSet::getShape1() const {
return mShape1;
}
// Return the second proxy shape
inline ProxyShape* ContactManifoldSet::getShape2() const {
return mShape2;
}
// Return the number of manifolds in the set
inline int ContactManifoldSet::getNbContactManifolds() const {
return mNbManifolds;
}
// Return a pointer to the first element of the linked-list of contact manifolds
inline ContactManifold* ContactManifoldSet::getContactManifolds() const {
return mManifolds;
}
}
#endif