167 lines
6.1 KiB
C++
167 lines
6.1 KiB
C++
// This file is part of Eigen, a lightweight C++ template library
|
|
// for linear algebra.
|
|
//
|
|
// Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr>
|
|
//
|
|
// This Source Code Form is subject to the terms of the Mozilla
|
|
// Public License v. 2.0. If a copy of the MPL was not distributed
|
|
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
#ifndef EIGEN_SCALING_H
|
|
#define EIGEN_SCALING_H
|
|
|
|
namespace Eigen {
|
|
|
|
/** \geometry_module \ingroup Geometry_Module
|
|
*
|
|
* \class Scaling
|
|
*
|
|
* \brief Represents a generic uniform scaling transformation
|
|
*
|
|
* \param _Scalar the scalar type, i.e., the type of the coefficients.
|
|
*
|
|
* This class represent a uniform scaling transformation. It is the return
|
|
* type of Scaling(Scalar), and most of the time this is the only way it
|
|
* is used. In particular, this class is not aimed to be used to store a scaling transformation,
|
|
* but rather to make easier the constructions and updates of Transform objects.
|
|
*
|
|
* To represent an axis aligned scaling, use the DiagonalMatrix class.
|
|
*
|
|
* \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform
|
|
*/
|
|
template<typename _Scalar>
|
|
class UniformScaling
|
|
{
|
|
public:
|
|
/** the scalar type of the coefficients */
|
|
typedef _Scalar Scalar;
|
|
|
|
protected:
|
|
|
|
Scalar m_factor;
|
|
|
|
public:
|
|
|
|
/** Default constructor without initialization. */
|
|
UniformScaling() {}
|
|
/** Constructs and initialize a uniform scaling transformation */
|
|
explicit inline UniformScaling(const Scalar& s) : m_factor(s) {}
|
|
|
|
inline const Scalar& factor() const { return m_factor; }
|
|
inline Scalar& factor() { return m_factor; }
|
|
|
|
/** Concatenates two uniform scaling */
|
|
inline UniformScaling operator* (const UniformScaling& other) const
|
|
{ return UniformScaling(m_factor * other.factor()); }
|
|
|
|
/** Concatenates a uniform scaling and a translation */
|
|
template<int Dim>
|
|
inline Transform<Scalar,Dim,Affine> operator* (const Translation<Scalar,Dim>& t) const;
|
|
|
|
/** Concatenates a uniform scaling and an affine transformation */
|
|
template<int Dim, int Mode, int Options>
|
|
inline Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> operator* (const Transform<Scalar,Dim, Mode, Options>& t) const
|
|
{
|
|
Transform<Scalar,Dim,(int(Mode)==int(Isometry)?Affine:Mode)> res = t;
|
|
res.prescale(factor());
|
|
return res;
|
|
}
|
|
|
|
/** Concatenates a uniform scaling and a linear transformation matrix */
|
|
// TODO returns an expression
|
|
template<typename Derived>
|
|
inline typename internal::plain_matrix_type<Derived>::type operator* (const MatrixBase<Derived>& other) const
|
|
{ return other * m_factor; }
|
|
|
|
template<typename Derived,int Dim>
|
|
inline Matrix<Scalar,Dim,Dim> operator*(const RotationBase<Derived,Dim>& r) const
|
|
{ return r.toRotationMatrix() * m_factor; }
|
|
|
|
/** \returns the inverse scaling */
|
|
inline UniformScaling inverse() const
|
|
{ return UniformScaling(Scalar(1)/m_factor); }
|
|
|
|
/** \returns \c *this with scalar type casted to \a NewScalarType
|
|
*
|
|
* Note that if \a NewScalarType is equal to the current scalar type of \c *this
|
|
* then this function smartly returns a const reference to \c *this.
|
|
*/
|
|
template<typename NewScalarType>
|
|
inline UniformScaling<NewScalarType> cast() const
|
|
{ return UniformScaling<NewScalarType>(NewScalarType(m_factor)); }
|
|
|
|
/** Copy constructor with scalar type conversion */
|
|
template<typename OtherScalarType>
|
|
inline explicit UniformScaling(const UniformScaling<OtherScalarType>& other)
|
|
{ m_factor = Scalar(other.factor()); }
|
|
|
|
/** \returns \c true if \c *this is approximately equal to \a other, within the precision
|
|
* determined by \a prec.
|
|
*
|
|
* \sa MatrixBase::isApprox() */
|
|
bool isApprox(const UniformScaling& other, const typename NumTraits<Scalar>::Real& prec = NumTraits<Scalar>::dummy_precision()) const
|
|
{ return internal::isApprox(m_factor, other.factor(), prec); }
|
|
|
|
};
|
|
|
|
/** Concatenates a linear transformation matrix and a uniform scaling */
|
|
// NOTE this operator is defiend in MatrixBase and not as a friend function
|
|
// of UniformScaling to fix an internal crash of Intel's ICC
|
|
template<typename Derived> typename MatrixBase<Derived>::ScalarMultipleReturnType
|
|
MatrixBase<Derived>::operator*(const UniformScaling<Scalar>& s) const
|
|
{ return derived() * s.factor(); }
|
|
|
|
/** Constructs a uniform scaling from scale factor \a s */
|
|
static inline UniformScaling<float> Scaling(float s) { return UniformScaling<float>(s); }
|
|
/** Constructs a uniform scaling from scale factor \a s */
|
|
static inline UniformScaling<double> Scaling(double s) { return UniformScaling<double>(s); }
|
|
/** Constructs a uniform scaling from scale factor \a s */
|
|
template<typename RealScalar>
|
|
static inline UniformScaling<std::complex<RealScalar> > Scaling(const std::complex<RealScalar>& s)
|
|
{ return UniformScaling<std::complex<RealScalar> >(s); }
|
|
|
|
/** Constructs a 2D axis aligned scaling */
|
|
template<typename Scalar>
|
|
static inline DiagonalMatrix<Scalar,2> Scaling(const Scalar& sx, const Scalar& sy)
|
|
{ return DiagonalMatrix<Scalar,2>(sx, sy); }
|
|
/** Constructs a 3D axis aligned scaling */
|
|
template<typename Scalar>
|
|
static inline DiagonalMatrix<Scalar,3> Scaling(const Scalar& sx, const Scalar& sy, const Scalar& sz)
|
|
{ return DiagonalMatrix<Scalar,3>(sx, sy, sz); }
|
|
|
|
/** Constructs an axis aligned scaling expression from vector expression \a coeffs
|
|
* This is an alias for coeffs.asDiagonal()
|
|
*/
|
|
template<typename Derived>
|
|
static inline const DiagonalWrapper<const Derived> Scaling(const MatrixBase<Derived>& coeffs)
|
|
{ return coeffs.asDiagonal(); }
|
|
|
|
/** \addtogroup Geometry_Module */
|
|
//@{
|
|
/** \deprecated */
|
|
typedef DiagonalMatrix<float, 2> AlignedScaling2f;
|
|
/** \deprecated */
|
|
typedef DiagonalMatrix<double,2> AlignedScaling2d;
|
|
/** \deprecated */
|
|
typedef DiagonalMatrix<float, 3> AlignedScaling3f;
|
|
/** \deprecated */
|
|
typedef DiagonalMatrix<double,3> AlignedScaling3d;
|
|
//@}
|
|
|
|
template<typename Scalar>
|
|
template<int Dim>
|
|
inline Transform<Scalar,Dim,Affine>
|
|
UniformScaling<Scalar>::operator* (const Translation<Scalar,Dim>& t) const
|
|
{
|
|
Transform<Scalar,Dim,Affine> res;
|
|
res.matrix().setZero();
|
|
res.linear().diagonal().fill(factor());
|
|
res.translation() = factor() * t.vector();
|
|
res(Dim,Dim) = Scalar(1);
|
|
return res;
|
|
}
|
|
|
|
} // end namespace Eigen
|
|
|
|
#endif // EIGEN_SCALING_H
|