reactphysics3d/src/collision/EPA/EPAAlgorithm.cpp
2011-02-19 19:38:08 +00:00

383 lines
18 KiB
C++

/********************************************************************************
* ReactPhysics3D physics library, http://code.google.com/p/reactphysics3d/ *
* Copyright (c) 2011 Daniel Chappuis *
*********************************************************************************
* *
* Permission is hereby granted, free of charge, to any person obtaining a copy *
* of this software and associated documentation files (the "Software"), to deal *
* in the Software without restriction, including without limitation the rights *
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell *
* copies of the Software, and to permit persons to whom the Software is *
* furnished to do so, subject to the following conditions: *
* *
* The above copyright notice and this permission notice shall be included in *
* all copies or substantial portions of the Software. *
* *
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR *
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, *
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE *
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER *
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, *
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN *
* THE SOFTWARE. *
********************************************************************************/
// Libraries
#include "EPAAlgorithm.h"
#include "../GJK/GJKAlgorithm.h"
#include "TrianglesStore.h"
// We want to use the ReactPhysics3D namespace
using namespace reactphysics3d;
// TODO : Check that allocated memory is correctly deleted
// Constructor
EPAAlgorithm::EPAAlgorithm() {
}
// Destructor
EPAAlgorithm::~EPAAlgorithm() {
}
// Decide if the origin is in the tetrahedron
// Return 0 if the origin is in the tetrahedron and return the number (1,2,3 or 4) of
// the vertex that is wrong if the origin is not in the tetrahedron
int EPAAlgorithm::isOriginInTetrahedron(const Vector3D& p1, const Vector3D& p2, const Vector3D& p3, const Vector3D& p4) const {
// Check vertex 1
Vector3D normal1 = (p2-p1).cross(p3-p1);
if (normal1.dot(p1) > 0.0 == normal1.dot(p4) > 0.0) {
return 4;
}
// Check vertex 2
Vector3D normal2 = (p4-p2).cross(p3-p2);
if (normal2.dot(p2) > 0.0 == normal2.dot(p1) > 0.0) {
return 1;
}
// Check vertex 3
Vector3D normal3 = (p4-p3).cross(p1-p3);
if (normal3.dot(p3) > 0.0 == normal3.dot(p2) > 0.0) {
return 2;
}
// Check vertex 4
Vector3D normal4 = (p2-p4).cross(p1-p4);
if (normal4.dot(p4) > 0.0 == normal4.dot(p3) > 0.0) {
return 3;
}
// The origin is in the tetrahedron, we return 0
return 0;
}
// Compute the penetration depth with the EPA algorithms
// This method computes the penetration depth and contact points between two
// enlarged objects (with margin) where the original objects (without margin)
// intersect. An initial simplex that contains origin has been computed with
// GJK algorithm. The EPA Algorithm will extend this simplex polytope to find
// the correct penetration depth
bool EPAAlgorithm::computePenetrationDepthAndContactPoints(Simplex simplex, const NarrowBoundingVolume* const boundingVolume1,
const NarrowBoundingVolume* const boundingVolume2,
Vector3D& v, ContactInfo*& contactInfo) {
Vector3D suppPointsA[MAX_SUPPORT_POINTS]; // Support points of object A in local coordinates
Vector3D suppPointsB[MAX_SUPPORT_POINTS]; // Support points of object B in local coordinates
Vector3D points[MAX_SUPPORT_POINTS]; // Current points
TrianglesStore triangleStore; // Store the triangles
TriangleEPA* triangleHeap[MAX_FACETS]; // Heap that contains the face candidate of the EPA algorithm
// TODO : Check that we call all the supportPoint() function with a margin
// Get the simplex computed previously by the GJK algorithm
unsigned int nbVertices = simplex.getSimplex(suppPointsA, suppPointsB, points);
// Compute the tolerance
double tolerance = MACHINE_EPSILON * simplex.getMaxLengthSquareOfAPoint();
// Number of triangles in the polytope
unsigned int nbTriangles = 0;
// Clear the storing of triangles
triangleStore.clear();
// Select an action according to the number of points in the simplex
// computed with GJK algorithm in order to obtain an initial polytope for
// The EPA algorithm.
switch(nbVertices) {
case 1:
// Only one point in the simplex (which should be the origin). We have a touching contact
// with zero penetration depth. We drop that kind of contact. Therefore, we return false
return false;
case 2: {
// The simplex returned by GJK is a line segment d containing the origin.
// We add two additional support points to construct a hexahedron (two tetrahedron
// glued together with triangle faces. The idea is to compute three different vectors
// v1, v2 and v3 that are orthogonal to the segment d. The three vectors are relatively
// rotated of 120 degree around the d segment. The the three new points to
// construct the polytope are the three support points in those three directions
// v1, v2 and v3.
// Direction of the segment
Vector3D d = (points[1] - points[0]).getUnit();
// Choose the coordinate axis from the minimal absolute component of the vector d
int minAxis = d.getAbsoluteVector().getMinAxis();
// Compute sin(60)
const double sin60 = sqrt(3.0) * 0.5;
// Create a rotation quaternion to rotate the vector v1 to get the vectors
// v2 and v3
Quaternion rotationQuat(d.getX() * sin60, d.getY() * sin60, d.getZ() * sin60, 0.5);
// Construct the corresponding rotation matrix
Matrix3x3 rotationMat = rotationQuat.getMatrix();
// Compute the vector v1, v2, v3
Vector3D v1 = d.cross(Vector3D(minAxis == 0, minAxis == 1, minAxis == 2));
Vector3D v2 = rotationMat * v1;
Vector3D v3 = rotationMat * v2;
// Compute the support point in the direction of v1
suppPointsA[2] = boundingVolume1->getSupportPoint(v1, OBJECT_MARGIN);
suppPointsB[2] = boundingVolume2->getSupportPoint(v1.getOpposite(), OBJECT_MARGIN);
points[2] = suppPointsA[2] - suppPointsB[2];
// Compute the support point in the direction of v2
suppPointsA[3] = boundingVolume1->getSupportPoint(v2, OBJECT_MARGIN);
suppPointsB[3] = boundingVolume2->getSupportPoint(v2.getOpposite(), OBJECT_MARGIN);
points[3] = suppPointsA[3] - suppPointsB[3];
// Compute the support point in the direction of v3
suppPointsA[4] = boundingVolume1->getSupportPoint(v3, OBJECT_MARGIN);
suppPointsB[4] = boundingVolume2->getSupportPoint(v3.getOpposite(), OBJECT_MARGIN);
points[4] = suppPointsA[4] - suppPointsB[4];
// Now we have an hexahedron (two tetrahedron glued together). We can simply keep the
// tetrahedron that contains the origin in order that the initial polytope of the
// EPA algorithm is a tetrahedron, which is simpler to deal with.
// If the origin is in the tetrahedron of points 0, 2, 3, 4
if (isOriginInTetrahedron(points[0], points[2], points[3], points[4]) == 0) {
// We use the point 4 instead of point 1 for the initial tetrahedron
suppPointsA[1] = suppPointsA[4];
suppPointsB[1] = suppPointsB[4];
points[1] = points[4];
}
else if (isOriginInTetrahedron(points[1], points[2], points[3], points[4]) == 0) { // If the origin is in the tetrahedron of points 1, 2, 3, 4
// We use the point 4 instead of point 0 for the initial tetrahedron
suppPointsA[0] = suppPointsA[0];
suppPointsB[0] = suppPointsB[0];
points[0] = points[0];
}
else {
// The origin is not in the initial polytope
return false;
}
// The polytope contains now 4 vertices
nbVertices = 4;
}
case 4: {
// The simplex computed by the GJK algorithm is a tetrahedron. Here we check
// if this tetrahedron contains the origin. If it is the case, we keep it and
// otherwise we remove the wrong vertex of the tetrahedron and go in the case
// where the GJK algorithm compute a simplex of three vertices.
// Check if the tetrahedron contains the origin (or wich is the wrong vertex otherwise)
int badVertex = isOriginInTetrahedron(points[0], points[1], points[2], points[3]);
// If the origin is in the tetrahedron
if (badVertex == 0) {
// The tetrahedron is a correct initial polytope for the EPA algorithm.
// Therefore, we construct the tetrahedron.
// Comstruct the 4 triangle faces of the tetrahedron
TriangleEPA* face0 = triangleStore.newTriangle(points, 0, 1, 2);
TriangleEPA* face1 = triangleStore.newTriangle(points, 0, 3, 1);
TriangleEPA* face2 = triangleStore.newTriangle(points, 0, 2, 3);
TriangleEPA* face3 = triangleStore.newTriangle(points, 1, 3, 2);
// If the constructed tetrahedron is not correct
if (!(face0 && face1 && face2 && face3 && face0->getDistSquare() > 0.0 &&
face1->getDistSquare() > 0.0 && face2->getDistSquare() > 0.0 && face3->getDistSquare() > 0.0)) {
return false;
}
// Associate the edges of neighbouring triangle faces
EdgeEPA(face0, 0).link(EdgeEPA(face1, 2));
EdgeEPA(face0, 1).link(EdgeEPA(face3, 2));
EdgeEPA(face0, 2).link(EdgeEPA(face2, 0));
EdgeEPA(face1, 0).link(EdgeEPA(face2, 2));
EdgeEPA(face1, 1).link(EdgeEPA(face3, 0));
EdgeEPA(face2, 1).link(EdgeEPA(face3, 1));
// Add the triangle faces in the candidate heap
addFaceCandidate(face0, triangleHeap, nbTriangles, DBL_MAX);
addFaceCandidate(face1, triangleHeap, nbTriangles, DBL_MAX);
addFaceCandidate(face2, triangleHeap, nbTriangles, DBL_MAX);
addFaceCandidate(face3, triangleHeap, nbTriangles, DBL_MAX);
break;
}
// If the tetrahedron contains a wrong vertex (the origin is not inside the tetrahedron)
if (badVertex < 4) {
// Replace the wrong vertex with the point 5 (if it exists)
suppPointsA[badVertex-1] = suppPointsA[4];
suppPointsB[badVertex-1] = suppPointsB[4];
points[badVertex-1] = points[4];
}
// We have removed the wrong vertex
nbVertices = 3;
}
case 3: {
// The GJK algorithm returned a triangle that contains the origin.
// We need two new vertices to obtain a hexahedron. The two new vertices
// are the support points in the "n" and "-n" direction where "n" is the
// normal of the triangle.
// Compute the normal of the triangle
Vector3D v1 = points[1] - points[0];
Vector3D v2 = points[2] - points[0];
Vector3D n = v1.cross(v2);
// Compute the two new vertices to obtain a hexahedron
suppPointsA[3] = boundingVolume1->getSupportPoint(n, OBJECT_MARGIN);
suppPointsB[3] = boundingVolume2->getSupportPoint(n.getOpposite(), OBJECT_MARGIN);
points[3] = suppPointsA[3] - suppPointsB[3];
suppPointsA[4] = boundingVolume1->getSupportPoint(n.getOpposite(), OBJECT_MARGIN);
suppPointsB[4] = boundingVolume2->getSupportPoint(n, OBJECT_MARGIN);
points[4] = suppPointsA[4] - suppPointsB[4];
// Construct the triangle faces
TriangleEPA* face0 = triangleStore.newTriangle(points, 0, 1, 3);
TriangleEPA* face1 = triangleStore.newTriangle(points, 1, 2, 3);
TriangleEPA* face2 = triangleStore.newTriangle(points, 2, 0, 3);
TriangleEPA* face3 = triangleStore.newTriangle(points, 0, 2, 4);
TriangleEPA* face4 = triangleStore.newTriangle(points, 2, 1, 4);
TriangleEPA* face5 = triangleStore.newTriangle(points, 1, 0, 4);
// If the polytope hasn't been correctly constructed
if (!(face0 && face1 && face2 && face3 && face4 && face5 &&
face0->getDistSquare() > 0.0 && face1->getDistSquare() > 0.0 &&
face2->getDistSquare() > 0.0 && face3->getDistSquare() > 0.0 &&
face4->getDistSquare() > 0.0 && face5->getDistSquare() > 0.0)) {
return false;
}
// Associate the edges of neighbouring faces
EdgeEPA(face0, 1).link(EdgeEPA(face1, 2));
EdgeEPA(face1, 1).link(EdgeEPA(face2, 2));
EdgeEPA(face2, 1).link(EdgeEPA(face0, 2));
EdgeEPA(face0, 0).link(EdgeEPA(face5, 0));
EdgeEPA(face1, 0).link(EdgeEPA(face4, 0));
EdgeEPA(face2, 0).link(EdgeEPA(face3, 0));
EdgeEPA(face3, 1).link(EdgeEPA(face4, 2));
EdgeEPA(face4, 1).link(EdgeEPA(face5, 2));
EdgeEPA(face5, 1).link(EdgeEPA(face3, 2));
// Add the candidate faces in the heap
addFaceCandidate(face0, triangleHeap, nbTriangles, DBL_MAX);
addFaceCandidate(face1, triangleHeap, nbTriangles, DBL_MAX);
addFaceCandidate(face2, triangleHeap, nbTriangles, DBL_MAX);
addFaceCandidate(face3, triangleHeap, nbTriangles, DBL_MAX);
addFaceCandidate(face4, triangleHeap, nbTriangles, DBL_MAX);
addFaceCandidate(face5, triangleHeap, nbTriangles, DBL_MAX);
nbVertices = 5;
}
break;
}
// At this point, we have a polytope that contains the origin. Therefore, we
// can run the EPA algorithm.
if (nbTriangles == 0) {
return false;
}
TriangleEPA* triangle = 0;
double upperBoundSquarePenDepth = DBL_MAX;
do {
triangle = triangleHeap[0];
// Get the next candidate face (the face closest to the origin)
std::pop_heap(&triangleHeap[0], &triangleHeap[nbTriangles], triangleComparison);
nbTriangles--;
// If the candidate face in the heap is not obsolete
if (!triangle->getIsObsolete()) {
// If we have reached the maximum number of support points
if (nbVertices == MAX_SUPPORT_POINTS) {
assert(false);
break;
}
// Compute the support point of the Minkowski difference (A-B) in the closest point direction
suppPointsA[nbVertices] = boundingVolume1->getSupportPoint(triangle->getClosestPoint(), OBJECT_MARGIN);
suppPointsB[nbVertices] = boundingVolume2->getSupportPoint(triangle->getClosestPoint().getOpposite(), OBJECT_MARGIN);
points[nbVertices] = suppPointsA[nbVertices] - suppPointsB[nbVertices];
int indexNewVertex = nbVertices;
nbVertices++;
// Update the upper bound of the penetration depth
double wDotv = points[indexNewVertex].dot(triangle->getClosestPoint());
assert(wDotv > 0.0);
double wDotVSquare = wDotv * wDotv / triangle->getDistSquare();
if (wDotVSquare < upperBoundSquarePenDepth) {
upperBoundSquarePenDepth = wDotVSquare;
}
// Compute the error
double error = wDotv - triangle->getDistSquare();
if (error <= std::max(tolerance, REL_ERROR_SQUARE * wDotv) ||
points[indexNewVertex] == points[(*triangle)[0]] ||
points[indexNewVertex] == points[(*triangle)[1]] ||
points[indexNewVertex] == points[(*triangle)[2]]) {
break;
}
// Now, we compute the silhouette cast by the new vertex.
// The current triangle face will not be in the convex hull.
// We start the local recursive silhouette algorithm from
// the current triangle face.
int i = triangleStore.getNbTriangles();
if (!triangle->computeSilhouette(points, indexNewVertex, triangleStore)) {
break;
}
// Construct the new polytope by constructing triangle faces from the
// silhouette to the new vertex of the polytope in order that the new
// polytope is always convex
while(i != triangleStore.getNbTriangles()) {
TriangleEPA* newTriangle = &triangleStore[i];
addFaceCandidate(newTriangle, triangleHeap, nbTriangles, upperBoundSquarePenDepth);
i++;
}
}
} while(nbTriangles > 0 && triangleHeap[0]->getDistSquare() <= upperBoundSquarePenDepth);
// Compute the contact info
v = triangle->getClosestPoint();
Vector3D pA = triangle->computeClosestPointOfObject(suppPointsA);
Vector3D pB = triangle->computeClosestPointOfObject(suppPointsB);
Vector3D diff = pB - pA;
Vector3D normal = diff.getUnit();
double penetrationDepth = diff.length();
assert(penetrationDepth > 0.0);
contactInfo = new ContactInfo(boundingVolume1->getBodyPointer(), boundingVolume2->getBodyPointer(),
normal, penetrationDepth, pA, pB);
return true;
}