resnet-classifier/image_classifier/engines/deepspeed.py

87 lines
2.2 KiB
Python
Raw Normal View History

2023-08-05 03:40:14 +00:00
"""
# https://github.com/enhuiz/pytorch-training-utilities
"""
# to-do: replace this
# to-do: swap out deepspeed
from ..config import cfg
from ..utils import dispatch_attribute, flatten_dict, gather_attribute, do_gc, to_device
import logging
import time
import torch
import torch.distributed
from torch import Tensor
from torch.distributed import all_reduce
from typing import Any, Protocol
from .base import TrainFeeder
_logger = logging.getLogger(__name__)
from deepspeed import DeepSpeedEngine, DeepSpeedConfig, comm as dist, init_distributed as init_deepspeed_dist
from deepspeed.accelerator import get_accelerator
from ..utils.distributed import init_distributed, distributed_initialized
if not distributed_initialized() and cfg.trainer.backend == "deepspeed":
init_distributed(init_deepspeed_dist)
class Engine(DeepSpeedEngine):
def __init__(self, *args, **kwargs):
kwargs['config'] = cfg.trainer.deepspeed.get_ds_cfg(model=kwargs['model'])
kwargs['config_class'] = DeepSpeedConfig(kwargs['config'])
super().__init__(None, *args, **kwargs)
self._frozen_params = set()
def freeze(self):
for p in self.module.parameters():
if p.requires_grad:
p.requires_grad_(False)
self._frozen_params.add(p)
def unfreeze(self):
for p in self._frozen_params:
p.requires_grad_(True)
self._frozen_params.clear()
@property
def global_step(self):
return self.global_steps
@property
def micro_step(self):
return self.micro_steps
def gather_attribute(self, *args, **kwargs):
return gather_attribute(self.module, *args, **kwargs)
def dispatch_attribute(self, *args, **kwargs):
return dispatch_attribute(self.module, *args, **kwargs)
def set_lr(self, lr):
try:
if hasattr(self.optimizer, 'param_groups'):
for param_group in self.optimizer.param_groups:
param_group['lr'] = lr
else:
self.optimizer.set_lr(lr)
except Exception as e:
print(str(e))
def traverse(self, *args, **kwargs):
self.forward(*args, **kwargs)
losses = self.gather_attribute("loss")
loss = torch.stack([*losses.values()]).sum()
stats = {}
stats |= {k: v.item() for k, v in losses.items()}
stats |= self.gather_attribute("scalar")
self.backward(loss)
self.step()
return stats