resnet-classifier/setup.py

72 lines
1.9 KiB
Python
Executable File

import subprocess
import sys
from pathlib import Path
from datetime import datetime
from setuptools import setup, find_packages
def shell(*args):
out = subprocess.check_output(args)
return out.decode("ascii").strip()
def write_version(version_core, pre_release=True):
if pre_release:
time = shell("git", "log", "-1", "--format=%cd", "--date=iso")
time = datetime.strptime(time, "%Y-%m-%d %H:%M:%S %z")
time = time.strftime("%Y%m%d%H%M%S")
version = f"{version_core}-dev{time}"
else:
version = version_core
with open(Path("image_classifier", "version.py"), "w") as f:
f.write('__version__ = "{}"\n'.format(version))
return version
with open("README.md", "r") as f:
long_description = f.read()
setup(
name="image_classifier",
python_requires=">=3.10.0",
version=write_version("0.0.1"),
description="A ResNet-based image classifier",
author="ecker",
author_email="mrq@ecker.tech",
long_description=long_description,
long_description_content_type="text/markdown",
packages=find_packages(),
install_requires=(
# training backends
["deepspeed>=0.7.7"] if not sys.platform.startswith("win") else [])
+ [
# logging niceties
"coloredlogs>=15.0.1",
"humanize>=4.4.0",
"matplotlib>=3.6.0",
"pandas>=1.5.0",
# boiler plate niceties
"diskcache>=5.4.0",
"einops>=0.6.0",
"tqdm",
# HF bloat
"tokenizers",
"transformers",
"safetensors",
# training bloat
"h5py",
"prodigyopt @ git+https://github.com/konstmish/prodigy",
# practically the reason to use python
"numpy",
"torch>=1.13.0",
"torchmetrics",
"simple_http_server",
"pillow"
],
url="https://git.ecker.tech/mrq/resnet-classifier",
)