resnet-classifier/image_classifier/train.py

107 lines
2.7 KiB
Python
Executable File

# todo: clean this mess up
from .config import cfg
from .data import create_train_val_dataloader
from .utils import setup_logging, to_device, trainer, flatten_dict, do_gc
from .utils.trainer import load_engines
import json
import logging
import random
import torch
import torch.nn.functional as F
import traceback
from collections import defaultdict
from PIL import Image
from tqdm import tqdm
_logger = logging.getLogger(__name__)
def train_feeder(engine, batch):
engine( image=batch["image"], text=batch["text"] )
losses = engine.gather_attribute("loss")
stat = engine.gather_attribute("stats")
loss = torch.stack([*losses.values()]).sum()
stats = {}
stats |= {k: v.item() for k, v in losses.items()}
stats |= {k: v.item() for k, v in stat.items()}
return loss, stats
@torch.inference_mode()
def run_eval(engines, eval_name, dl):
engines_stats = {
'eval': eval_name
}
model = None
names = []
for name, engine in engines.items():
names.append(name)
model = engine
break
stats = defaultdict(list)
stats['loss'] = []
def process( name, batch, resps_list ):
for path, ref, hyp in zip(batch["path"], batch["text"], hyp):
continue
for batch in tqdm(dl):
batch: dict = to_device(batch, cfg.device)
res = model( image=batch['image'], text=batch['text'], sampling_temperature=cfg.evaluation.temperature )
for path, ref, hyp in zip(batch["path"], batch["text"], res):
hyp = hyp.replace('<s>', "").replace("</s>", "")
hyp_path = (cfg.log_dir / str(engines.global_step) / name / eval_name / hyp).with_suffix(".png")
hyp_path.parent.mkdir(parents=True, exist_ok=True)
image = Image.open(path).convert('RGB')
image.save(hyp_path)
losses = engine.gather_attribute("loss")
loss = torch.stack([*losses.values()]).sum().item()
stats['loss'].append(loss)
stats = {k: sum(v) / len(v) for k, v in stats.items()}
engines_stats.update(flatten_dict({ name: stats }))
iteration = engines.global_step
engines_stats['it'] = iteration
engines_stats['epoch'] = iteration * cfg.hyperparameters.gradient_accumulation_steps / len(dl)
_logger.info(f"Validation Metrics: {json.dumps(engines_stats)}.")
def main():
setup_logging(cfg.log_dir)
train_dl, subtrain_dl, val_dl = create_train_val_dataloader()
def eval_fn(engines):
try:
run_eval(engines, "subtrain", subtrain_dl)
run_eval(engines, "val", val_dl)
except Exception as e:
print("Error occurred while performing eval:", str(e))
print(traceback.format_exc())
do_gc()
trainer.train(
train_dl=train_dl,
train_feeder=train_feeder,
eval_fn=eval_fn,
)
if __name__ == "__main__":
main()