resnet-classifier/scripts/plot.py
2023-08-05 03:40:14 +00:00

107 lines
2.6 KiB
Python
Executable File

#!/usr/bin/env python3
import argparse
import json
import re
from pathlib import Path
import matplotlib.pyplot as plt
import pandas as pd
def plot(paths, args):
dfs = []
for path in paths:
with open(path, "r") as f:
text = f.read()
rows = []
pattern = r"(\{.+?\})"
for row in re.findall(pattern, text, re.DOTALL):
try:
row = json.loads(row)
except Exception as e:
continue
if "global_step" in row:
rows.append(row)
df = pd.DataFrame(rows)
if "name" in df:
df["name"] = df["name"].fillna("train")
else:
df["name"] = "train"
df["group"] = str(path.parents[args.group_level])
df["group"] = df["group"] + "/" + df["name"]
dfs.append(df)
df = pd.concat(dfs)
if args.max_y is not None:
df = df[df["global_step"] < args.max_x]
for gtag, gdf in sorted(
df.groupby("group"),
key=lambda p: (p[0].split("/")[-1], p[0]),
):
for y in args.ys:
gdf = gdf.sort_values("global_step")
if gdf[y].isna().all():
continue
if args.max_y is not None:
gdf = gdf[gdf[y] < args.max_y]
gdf[y] = gdf[y].ewm(10).mean()
gdf.plot(
x="global_step",
y=y,
label=f"{gtag}/{y}",
ax=plt.gca(),
marker="x" if len(gdf) < 100 else None,
alpha=0.7,
)
plt.gca().legend(
loc="center left",
fancybox=True,
shadow=True,
bbox_to_anchor=(1.04, 0.5),
)
def main():
parser = argparse.ArgumentParser()
parser.add_argument("ys", nargs="+")
parser.add_argument("--log-dir", default="logs", type=Path)
parser.add_argument("--out-dir", default="logs", type=Path)
parser.add_argument("--filename", default="log.txt")
parser.add_argument("--max-x", type=float, default=float("inf"))
parser.add_argument("--max-y", type=float, default=float("inf"))
parser.add_argument("--group-level", default=1)
parser.add_argument("--filter", default=None)
args = parser.parse_args()
paths = args.log_dir.rglob(f"**/{args.filename}")
if args.filter:
paths = filter(lambda p: re.match(".*" + args.filter + ".*", str(p)), paths)
plot(paths, args)
name = "-".join(args.ys)
out_path = (args.out_dir / name).with_suffix(".png")
plt.savefig(out_path, bbox_inches="tight")
if __name__ == "__main__":
main()