stable-diffusion-webui/modules/extras.py

195 lines
7.1 KiB
Python
Raw Normal View History

import os
import numpy as np
from PIL import Image
2022-09-25 23:22:12 +00:00
import torch
import tqdm
2022-09-25 23:22:12 +00:00
from modules import processing, shared, images, devices
from modules.shared import opts
import modules.gfpgan_model
from modules.ui import plaintext_to_html
import modules.codeformer_model
import piexif
2022-09-14 12:20:05 +00:00
import piexif.helper
cached_images = {}
def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility):
devices.torch_gc()
2022-09-16 03:23:37 +00:00
imageArr = []
# Also keep track of original file names
imageNameArr = []
if extras_mode == 1:
2022-09-16 03:23:37 +00:00
#convert file to pillow image
for img in image_folder:
image = Image.fromarray(np.array(Image.open(img)))
imageArr.append(image)
imageNameArr.append(os.path.splitext(img.orig_name)[0])
else:
imageArr.append(image)
imageNameArr.append(None)
outpath = opts.outdir_samples or opts.outdir_extras_samples
outputs = []
for image, image_name in zip(imageArr, imageNameArr):
2022-09-16 03:23:37 +00:00
existing_pnginfo = image.info or {}
image = image.convert("RGB")
info = ""
if gfpgan_visibility > 0:
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
res = Image.fromarray(restored_img)
2022-09-16 03:23:37 +00:00
if gfpgan_visibility < 1.0:
res = Image.blend(image, res, gfpgan_visibility)
2022-09-16 03:23:37 +00:00
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
image = res
2022-09-16 03:23:37 +00:00
if codeformer_visibility > 0:
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
res = Image.fromarray(restored_img)
2022-09-16 03:23:37 +00:00
if codeformer_visibility < 1.0:
res = Image.blend(image, res, codeformer_visibility)
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
2022-09-16 03:23:37 +00:00
image = res
2022-09-16 03:23:37 +00:00
if upscaling_resize != 1.0:
def upscale(image, scaler_index, resize):
small = image.crop((image.width // 2, image.height // 2, image.width // 2 + 10, image.height // 2 + 10))
pixels = tuple(np.array(small).flatten().tolist())
key = (resize, scaler_index, image.width, image.height, gfpgan_visibility, codeformer_visibility, codeformer_weight) + pixels
2022-09-16 03:23:37 +00:00
c = cached_images.get(key)
if c is None:
upscaler = shared.sd_upscalers[scaler_index]
c = upscaler.upscale(image, image.width * resize, image.height * resize)
cached_images[key] = c
2022-09-16 03:23:37 +00:00
return c
2022-09-16 03:23:37 +00:00
info += f"Upscale: {round(upscaling_resize, 3)}, model:{shared.sd_upscalers[extras_upscaler_1].name}\n"
res = upscale(image, extras_upscaler_1, upscaling_resize)
2022-09-16 03:23:37 +00:00
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
res2 = upscale(image, extras_upscaler_2, upscaling_resize)
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {round(extras_upscaler_2_visibility, 3)}, model:{shared.sd_upscalers[extras_upscaler_2].name}\n"
res = Image.blend(res, res2, extras_upscaler_2_visibility)
2022-09-16 03:23:37 +00:00
image = res
2022-09-16 03:23:37 +00:00
while len(cached_images) > 2:
del cached_images[next(iter(cached_images.keys()))]
images.save_image(image, path=outpath, basename="", seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo,
forced_filename=image_name if opts.use_original_name_batch else None)
outputs.append(image)
return outputs, plaintext_to_html(info), ''
2022-09-17 06:07:07 +00:00
def run_pnginfo(image):
if image is None:
return '', '', ''
items = image.info
geninfo = ''
if "exif" in image.info:
exif = piexif.load(image.info["exif"])
exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b'')
2022-09-14 12:20:05 +00:00
try:
exif_comment = piexif.helper.UserComment.load(exif_comment)
except ValueError:
exif_comment = exif_comment.decode('utf8', errors="ignore")
items['exif comment'] = exif_comment
geninfo = exif_comment
for field in ['jfif', 'jfif_version', 'jfif_unit', 'jfif_density', 'dpi', 'exif',
'loop', 'background', 'timestamp', 'duration']:
items.pop(field, None)
geninfo = items.get('parameters', geninfo)
info = ''
for key, text in items.items():
info += f"""
<div>
<p><b>{plaintext_to_html(str(key))}</b></p>
<p>{plaintext_to_html(str(text))}</p>
</div>
""".strip()+"\n"
if len(info) == 0:
message = "Nothing found in the image."
info = f"<div><p>{message}<p></div>"
return '', geninfo, info
2022-09-25 23:22:12 +00:00
def run_modelmerger(modelname_0, modelname_1, interp_method, interp_amount):
# Linear interpolation (https://en.wikipedia.org/wiki/Linear_interpolation)
def weighted_sum(theta0, theta1, alpha):
return ((1 - alpha) * theta0) + (alpha * theta1)
# Smoothstep (https://en.wikipedia.org/wiki/Smoothstep)
def sigmoid(theta0, theta1, alpha):
alpha = alpha * alpha * (3 - (2 * alpha))
return theta0 + ((theta1 - theta0) * alpha)
if os.path.exists(modelname_0):
model0_filename = modelname_0
modelname_0 = os.path.splitext(os.path.basename(modelname_0))[0]
else:
model0_filename = 'models/' + modelname_0 + '.ckpt'
if os.path.exists(modelname_1):
model1_filename = modelname_1
modelname_1 = os.path.splitext(os.path.basename(modelname_1))[0]
else:
model1_filename = 'models/' + modelname_1 + '.ckpt'
print(f"Loading {model0_filename}...")
model_0 = torch.load(model0_filename, map_location='cpu')
print(f"Loading {model1_filename}...")
model_1 = torch.load(model1_filename, map_location='cpu')
2022-09-25 23:22:12 +00:00
theta_0 = model_0['state_dict']
theta_1 = model_1['state_dict']
theta_funcs = {
"Weighted Sum": weighted_sum,
"Sigmoid": sigmoid,
}
theta_func = theta_funcs[interp_method]
print(f"Merging...")
for key in tqdm.tqdm(theta_0.keys()):
2022-09-25 23:22:12 +00:00
if 'model' in key and key in theta_1:
theta_0[key] = theta_func(theta_0[key], theta_1[key], interp_amount)
2022-09-25 23:22:12 +00:00
for key in theta_1.keys():
if 'model' in key and key not in theta_0:
theta_0[key] = theta_1[key]
output_modelname = 'models/' + modelname_0 + '-' + modelname_1 + '-' + interp_method.replace(" ", "_") + '-' + str(interp_amount) + '-merged.ckpt'
print(f"Saving to {output_modelname}...")
2022-09-25 23:22:12 +00:00
torch.save(model_0, output_modelname)
print(f"Checkpoint saved.")
return "Checkpoint saved to " + output_modelname