2022-10-05 18:50:10 +00:00
import os . path
from concurrent . futures import ProcessPoolExecutor
import numpy as np
import deepdanbooru as dd
import tensorflow as tf
def _load_tf_and_return_tags ( pil_image , threshold ) :
this_folder = os . path . dirname ( __file__ )
model_path = os . path . join ( this_folder , ' .. ' , ' models ' , ' deepbooru ' , ' deepdanbooru-v3-20211112-sgd-e28 ' )
if not os . path . exists ( model_path ) :
return " Download https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip unpack and put into models/deepbooru "
tags = dd . project . load_tags_from_project ( model_path )
model = dd . project . load_model_from_project (
model_path , compile_model = True
)
width = model . input_shape [ 2 ]
height = model . input_shape [ 1 ]
image = np . array ( pil_image )
image = tf . image . resize (
image ,
size = ( height , width ) ,
method = tf . image . ResizeMethod . AREA ,
preserve_aspect_ratio = True ,
)
image = image . numpy ( ) # EagerTensor to np.array
image = dd . image . transform_and_pad_image ( image , width , height )
image = image / 255.0
image_shape = image . shape
image = image . reshape ( ( 1 , image_shape [ 0 ] , image_shape [ 1 ] , image_shape [ 2 ] ) )
y = model . predict ( image ) [ 0 ]
result_dict = { }
for i , tag in enumerate ( tags ) :
result_dict [ tag ] = y [ i ]
result_tags_out = [ ]
result_tags_print = [ ]
for tag in tags :
if result_dict [ tag ] > = threshold :
2022-10-05 19:15:08 +00:00
if tag . startswith ( " rating: " ) :
continue
2022-10-05 18:50:10 +00:00
result_tags_out . append ( tag )
result_tags_print . append ( f ' { result_dict [ tag ] } { tag } ' )
print ( ' \n ' . join ( sorted ( result_tags_print , reverse = True ) ) )
return ' , ' . join ( result_tags_out )
def get_deepbooru_tags ( pil_image , threshold = 0.5 ) :
with ProcessPoolExecutor ( ) as executor :
f = executor . submit ( _load_tf_and_return_tags , pil_image , threshold )
ret = f . result ( ) # will rethrow any exceptions
return ret