stable-diffusion-webui/scripts/xy_grid.py

304 lines
11 KiB
Python
Raw Normal View History

2022-09-03 16:32:45 +00:00
from collections import namedtuple
from copy import copy
2022-10-06 10:55:21 +00:00
from itertools import permutations, chain
2022-09-03 16:32:45 +00:00
import random
2022-10-06 10:55:21 +00:00
import csv
from io import StringIO
from PIL import Image
import numpy as np
2022-09-03 16:32:45 +00:00
import modules.scripts as scripts
import gradio as gr
from modules import images
from modules.processing import process_images, Processed
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
2022-09-03 16:32:45 +00:00
import modules.sd_samplers
import modules.sd_models
import re
2022-09-03 16:32:45 +00:00
def apply_field(field):
def fun(p, x, xs):
setattr(p, field, x)
return fun
def apply_prompt(p, x, xs):
p.prompt = p.prompt.replace(xs[0], x)
p.negative_prompt = p.negative_prompt.replace(xs[0], x)
2022-09-03 16:32:45 +00:00
2022-10-04 06:18:00 +00:00
def apply_order(p, x, xs):
token_order = []
2022-10-04 06:18:00 +00:00
# Initally grab the tokens from the prompt, so they can be replaced in order of earliest seen
for token in x:
token_order.append((p.prompt.find(token), token))
token_order.sort(key=lambda t: t[0])
2022-10-04 05:07:36 +00:00
prompt_parts = []
# Split the prompt up, taking out the tokens
for _, token in token_order:
n = p.prompt.find(token)
prompt_parts.append(p.prompt[0:n])
p.prompt = p.prompt[n + len(token):]
# Rebuild the prompt with the tokens in the order we want
prompt_tmp = ""
for idx, part in enumerate(prompt_parts):
prompt_tmp += part
prompt_tmp += x[idx]
p.prompt = prompt_tmp + p.prompt
2022-09-03 16:32:45 +00:00
samplers_dict = {}
for i, sampler in enumerate(modules.sd_samplers.samplers):
samplers_dict[sampler.name.lower()] = i
for alias in sampler.aliases:
samplers_dict[alias.lower()] = i
def apply_sampler(p, x, xs):
sampler_index = samplers_dict.get(x.lower(), None)
if sampler_index is None:
raise RuntimeError(f"Unknown sampler: {x}")
p.sampler_index = sampler_index
def apply_checkpoint(p, x, xs):
2022-09-28 21:31:53 +00:00
info = modules.sd_models.get_closet_checkpoint_match(x)
assert info is not None, f'Checkpoint for {x} not found'
modules.sd_models.reload_model_weights(shared.sd_model, info)
2022-09-03 16:32:45 +00:00
def format_value_add_label(p, opt, x):
if type(x) == float:
x = round(x, 8)
2022-09-03 16:32:45 +00:00
return f"{opt.label}: {x}"
def format_value(p, opt, x):
if type(x) == float:
x = round(x, 8)
2022-09-03 16:32:45 +00:00
return x
2022-10-04 06:18:00 +00:00
def format_value_join_list(p, opt, x):
return ", ".join(x)
def do_nothing(p, x, xs):
pass
2022-10-04 06:18:00 +00:00
def format_nothing(p, opt, x):
return ""
2022-09-03 16:32:45 +00:00
2022-10-04 06:18:00 +00:00
def str_permutations(x):
"""dummy function for specifying it in AxisOption's type when you want to get a list of permutations"""
return x
2022-09-03 16:32:45 +00:00
AxisOption = namedtuple("AxisOption", ["label", "type", "apply", "format_value"])
AxisOptionImg2Img = namedtuple("AxisOptionImg2Img", ["label", "type", "apply", "format_value"])
axis_options = [
AxisOption("Nothing", str, do_nothing, format_nothing),
2022-09-03 16:32:45 +00:00
AxisOption("Seed", int, apply_field("seed"), format_value_add_label),
AxisOption("Var. seed", int, apply_field("subseed"), format_value_add_label),
AxisOption("Var. strength", float, apply_field("subseed_strength"), format_value_add_label),
2022-09-03 16:32:45 +00:00
AxisOption("Steps", int, apply_field("steps"), format_value_add_label),
AxisOption("CFG Scale", float, apply_field("cfg_scale"), format_value_add_label),
AxisOption("Prompt S/R", str, apply_prompt, format_value),
2022-10-04 06:18:00 +00:00
AxisOption("Prompt order", str_permutations, apply_order, format_value_join_list),
AxisOption("Sampler", str, apply_sampler, format_value),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value),
AxisOption("Sigma Churn", float, apply_field("s_churn"), format_value_add_label),
AxisOption("Sigma min", float, apply_field("s_tmin"), format_value_add_label),
AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label),
AxisOption("Sigma noise", float, apply_field("s_noise"), format_value_add_label),
AxisOption("Eta", float, apply_field("eta"), format_value_add_label),
AxisOptionImg2Img("Denoising", float, apply_field("denoising_strength"), format_value_add_label), # as it is now all AxisOptionImg2Img items must go after AxisOption ones
2022-09-03 16:32:45 +00:00
]
def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend):
2022-09-03 16:32:45 +00:00
res = []
ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
2022-09-03 16:32:45 +00:00
first_pocessed = None
state.job_count = len(xs) * len(ys) * p.n_iter
2022-09-03 16:32:45 +00:00
for iy, y in enumerate(ys):
for ix, x in enumerate(xs):
state.job = f"{ix + iy * len(xs) + 1} out of {len(xs) * len(ys)}"
2022-09-03 16:32:45 +00:00
processed = cell(x, y)
if first_pocessed is None:
first_pocessed = processed
try:
res.append(processed.images[0])
except:
res.append(Image.new(res[0].mode, res[0].size))
2022-09-03 16:32:45 +00:00
grid = images.image_grid(res, rows=len(ys))
2022-09-14 12:01:16 +00:00
if draw_legend:
grid = images.draw_grid_annotations(grid, res[0].width, res[0].height, hor_texts, ver_texts)
2022-09-03 16:32:45 +00:00
first_pocessed.images = [grid]
return first_pocessed
re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*")
re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\(([+-]\d+(?:.\d*)?)\s*\))?\s*")
2022-09-14 11:56:26 +00:00
re_range_count = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*\])?\s*")
re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\[(\d+(?:.\d*)?)\s*\])?\s*")
2022-09-03 16:32:45 +00:00
class Script(scripts.Script):
def title(self):
return "X/Y plot"
def ui(self, is_img2img):
current_axis_options = [x for x in axis_options if type(x) == AxisOption or type(x) == AxisOptionImg2Img and is_img2img]
with gr.Row():
x_type = gr.Dropdown(label="X type", choices=[x.label for x in current_axis_options], value=current_axis_options[1].label, visible=False, type="index", elem_id="x_type")
2022-09-03 16:32:45 +00:00
x_values = gr.Textbox(label="X values", visible=False, lines=1)
with gr.Row():
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in current_axis_options], value=current_axis_options[4].label, visible=False, type="index", elem_id="y_type")
2022-09-03 16:32:45 +00:00
y_values = gr.Textbox(label="Y values", visible=False, lines=1)
2022-09-14 12:01:16 +00:00
draw_legend = gr.Checkbox(label='Draw legend', value=True)
no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False)
2022-09-03 16:32:45 +00:00
return [x_type, x_values, y_type, y_values, draw_legend, no_fixed_seeds]
def run(self, p, x_type, x_values, y_type, y_values, draw_legend, no_fixed_seeds):
modules.processing.fix_seed(p)
p.batch_size = 1
2022-09-03 16:32:45 +00:00
def process_axis(opt, vals):
if opt.label == 'Nothing':
return [0]
valslist = list(map(str.strip,chain.from_iterable(csv.reader(StringIO(vals)))))
2022-09-03 16:32:45 +00:00
if opt.type == int:
valslist_ext = []
for val in valslist:
m = re_range.fullmatch(val)
2022-09-14 11:56:26 +00:00
mc = re_range_count.fullmatch(val)
if m is not None:
start = int(m.group(1))
end = int(m.group(2))+1
step = int(m.group(3)) if m.group(3) is not None else 1
2022-09-03 16:32:45 +00:00
valslist_ext += list(range(start, end, step))
2022-09-14 11:56:26 +00:00
elif mc is not None:
start = int(mc.group(1))
end = int(mc.group(2))
num = int(mc.group(3)) if mc.group(3) is not None else 1
valslist_ext += [int(x) for x in np.linspace(start=start, stop=end, num=num).tolist()]
2022-09-03 16:32:45 +00:00
else:
valslist_ext.append(val)
valslist = valslist_ext
elif opt.type == float:
valslist_ext = []
for val in valslist:
m = re_range_float.fullmatch(val)
2022-09-14 11:56:26 +00:00
mc = re_range_count_float.fullmatch(val)
if m is not None:
start = float(m.group(1))
end = float(m.group(2))
step = float(m.group(3)) if m.group(3) is not None else 1
valslist_ext += np.arange(start, end + step, step).tolist()
2022-09-14 11:56:26 +00:00
elif mc is not None:
start = float(mc.group(1))
end = float(mc.group(2))
num = int(mc.group(3)) if mc.group(3) is not None else 1
valslist_ext += np.linspace(start=start, stop=end, num=num).tolist()
else:
valslist_ext.append(val)
valslist = valslist_ext
2022-10-04 06:18:00 +00:00
elif opt.type == str_permutations:
valslist = list(permutations(valslist))
2022-09-03 16:32:45 +00:00
valslist = [opt.type(x) for x in valslist]
return valslist
x_opt = axis_options[x_type]
xs = process_axis(x_opt, x_values)
y_opt = axis_options[y_type]
ys = process_axis(y_opt, y_values)
def fix_axis_seeds(axis_opt, axis_list):
if axis_opt.label == 'Seed':
return [int(random.randrange(4294967294)) if val is None or val == '' or val == -1 else val for val in axis_list]
else:
return axis_list
if not no_fixed_seeds:
xs = fix_axis_seeds(x_opt, xs)
ys = fix_axis_seeds(y_opt, ys)
if x_opt.label == 'Steps':
total_steps = sum(xs) * len(ys)
elif y_opt.label == 'Steps':
total_steps = sum(ys) * len(xs)
else:
total_steps = p.steps * len(xs) * len(ys)
print(f"X/Y plot will create {len(xs) * len(ys) * p.n_iter} images on a {len(xs)}x{len(ys)} grid. (Total steps to process: {total_steps * p.n_iter})")
shared.total_tqdm.updateTotal(total_steps * p.n_iter)
2022-09-03 16:32:45 +00:00
def cell(x, y):
pc = copy(p)
x_opt.apply(pc, x, xs)
y_opt.apply(pc, y, ys)
return process_images(pc)
processed = draw_xy_grid(
p,
2022-09-03 16:32:45 +00:00
xs=xs,
ys=ys,
x_labels=[x_opt.format_value(p, x_opt, x) for x in xs],
y_labels=[y_opt.format_value(p, y_opt, y) for y in ys],
2022-09-14 12:01:16 +00:00
cell=cell,
draw_legend=draw_legend
2022-09-03 16:32:45 +00:00
)
2022-09-04 00:38:24 +00:00
if opts.grid_save:
images.save_image(processed.images[0], p.outpath_grids, "xy_grid", prompt=p.prompt, seed=processed.seed, grid=True, p=p)
2022-09-03 16:32:45 +00:00
# restore checkpoint in case it was changed by axes
modules.sd_models.reload_model_weights(shared.sd_model)
2022-09-03 16:32:45 +00:00
return processed