Merge pull request #5065 from JaySmithWpg/vram-leak

#3449 - VRAM leak when switching to/from inpainting checkpoint
This commit is contained in:
AUTOMATIC1111 2022-11-27 13:52:14 +03:00 committed by GitHub
commit 01f2ed6844
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,4 +1,4 @@
from collections import namedtuple from collections import namedtuple, deque
import numpy as np import numpy as np
from math import floor from math import floor
import torch import torch
@ -344,18 +344,28 @@ class CFGDenoiser(torch.nn.Module):
class TorchHijack: class TorchHijack:
def __init__(self, kdiff_sampler): def __init__(self, sampler_noises):
self.kdiff_sampler = kdiff_sampler # Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
# implementation.
self.sampler_noises = deque(sampler_noises)
def __getattr__(self, item): def __getattr__(self, item):
if item == 'randn_like': if item == 'randn_like':
return self.kdiff_sampler.randn_like return self.randn_like
if hasattr(torch, item): if hasattr(torch, item):
return getattr(torch, item) return getattr(torch, item)
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item)) raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
def randn_like(self, x):
if self.sampler_noises:
noise = self.sampler_noises.popleft()
if noise.shape == x.shape:
return noise
return torch.randn_like(x)
class KDiffusionSampler: class KDiffusionSampler:
def __init__(self, funcname, sd_model): def __init__(self, funcname, sd_model):
@ -367,7 +377,6 @@ class KDiffusionSampler:
self.extra_params = sampler_extra_params.get(funcname, []) self.extra_params = sampler_extra_params.get(funcname, [])
self.model_wrap_cfg = CFGDenoiser(self.model_wrap) self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
self.sampler_noises = None self.sampler_noises = None
self.sampler_noise_index = 0
self.stop_at = None self.stop_at = None
self.eta = None self.eta = None
self.default_eta = 1.0 self.default_eta = 1.0
@ -400,26 +409,14 @@ class KDiffusionSampler:
def number_of_needed_noises(self, p): def number_of_needed_noises(self, p):
return p.steps return p.steps
def randn_like(self, x):
noise = self.sampler_noises[self.sampler_noise_index] if self.sampler_noises is not None and self.sampler_noise_index < len(self.sampler_noises) else None
if noise is not None and x.shape == noise.shape:
res = noise
else:
res = torch.randn_like(x)
self.sampler_noise_index += 1
return res
def initialize(self, p): def initialize(self, p):
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap.step = 0 self.model_wrap.step = 0
self.sampler_noise_index = 0
self.eta = p.eta or opts.eta_ancestral self.eta = p.eta or opts.eta_ancestral
if self.sampler_noises is not None: if self.sampler_noises is not None:
k_diffusion.sampling.torch = TorchHijack(self) k_diffusion.sampling.torch = TorchHijack(self.sampler_noises)
extra_params_kwargs = {} extra_params_kwargs = {}
for param_name in self.extra_params: for param_name in self.extra_params: