Merge remote-tracking branch 'upstream/master' into PowerShell

This commit is contained in:
d8ahazard 2023-02-02 15:42:56 -06:00
commit 06f0cb5037
80 changed files with 4710 additions and 1598 deletions

View File

@ -37,20 +37,20 @@ body:
id: what-should
attributes:
label: What should have happened?
description: tell what you think the normal behavior should be
description: Tell what you think the normal behavior should be
validations:
required: true
- type: input
id: commit
attributes:
label: Commit where the problem happens
description: Which commit are you running ? (Do not write *Latest version/repo/commit*, as this means nothing and will have changed by the time we read your issue. Rather, copy the **Commit hash** shown in the cmd/terminal when you launch the UI)
description: Which commit are you running ? (Do not write *Latest version/repo/commit*, as this means nothing and will have changed by the time we read your issue. Rather, copy the **Commit** link at the bottom of the UI, or from the cmd/terminal if you can't launch it.)
validations:
required: true
- type: dropdown
id: platforms
attributes:
label: What platforms do you use to access UI ?
label: What platforms do you use to access the UI ?
multiple: true
options:
- Windows
@ -74,10 +74,27 @@ body:
id: cmdargs
attributes:
label: Command Line Arguments
description: Are you using any launching parameters/command line arguments (modified webui-user.py) ? If yes, please write them below
description: Are you using any launching parameters/command line arguments (modified webui-user .bat/.sh) ? If yes, please write them below. Write "No" otherwise.
render: Shell
validations:
required: true
- type: textarea
id: extensions
attributes:
label: List of extensions
description: Are you using any extensions other than built-ins? If yes, provide a list, you can copy it at "Extensions" tab. Write "No" otherwise.
validations:
required: true
- type: textarea
id: logs
attributes:
label: Console logs
description: Please provide **full** cmd/terminal logs from the moment you started UI to the end of it, after your bug happened. If it's very long, provide a link to pastebin or similar service.
render: Shell
validations:
required: true
- type: textarea
id: misc
attributes:
label: Additional information, context and logs
description: Please provide us with any relevant additional info, context or log output.
label: Additional information
description: Please provide us with any relevant additional info or context.

View File

@ -17,7 +17,7 @@ A browser interface based on Gradio library for Stable Diffusion.
- a man in a (tuxedo:1.21) - alternative syntax
- select text and press ctrl+up or ctrl+down to automatically adjust attention to selected text (code contributed by anonymous user)
- Loopback, run img2img processing multiple times
- X/Y plot, a way to draw a 2 dimensional plot of images with different parameters
- X/Y/Z plot, a way to draw a 3 dimensional plot of images with different parameters
- Textual Inversion
- have as many embeddings as you want and use any names you like for them
- use multiple embeddings with different numbers of vectors per token
@ -155,6 +155,8 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al
- Idea for Composable Diffusion - https://github.com/energy-based-model/Compositional-Visual-Generation-with-Composable-Diffusion-Models-PyTorch
- xformers - https://github.com/facebookresearch/xformers
- DeepDanbooru - interrogator for anime diffusers https://github.com/KichangKim/DeepDanbooru
- Sampling in float32 precision from a float16 UNet - marunine for the idea, Birch-san for the example Diffusers implementation (https://github.com/Birch-san/diffusers-play/tree/92feee6)
- Instruct pix2pix - Tim Brooks (star), Aleksander Holynski (star), Alexei A. Efros (no star) - https://github.com/timothybrooks/instruct-pix2pix
- Security advice - RyotaK
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
- (You)

View File

@ -0,0 +1,98 @@
# File modified by authors of InstructPix2Pix from original (https://github.com/CompVis/stable-diffusion).
# See more details in LICENSE.
model:
base_learning_rate: 1.0e-04
target: modules.models.diffusion.ddpm_edit.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: edited
cond_stage_key: edit
# image_size: 64
# image_size: 32
image_size: 16
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: hybrid
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: false
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 0 ]
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 8
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
data:
target: main.DataModuleFromConfig
params:
batch_size: 128
num_workers: 1
wrap: false
validation:
target: edit_dataset.EditDataset
params:
path: data/clip-filtered-dataset
cache_dir: data/
cache_name: data_10k
split: val
min_text_sim: 0.2
min_image_sim: 0.75
min_direction_sim: 0.2
max_samples_per_prompt: 1
min_resize_res: 512
max_resize_res: 512
crop_res: 512
output_as_edit: False
real_input: True

View File

@ -1,8 +1,7 @@
model:
base_learning_rate: 1.0e-4
target: ldm.models.diffusion.ddpm.LatentDiffusion
base_learning_rate: 7.5e-05
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
params:
parameterization: "v"
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
@ -12,29 +11,36 @@ model:
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false
conditioning_key: crossattn
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: hybrid # important
monitor: val/loss_simple_ema
scale_factor: 0.18215
use_ema: False # we set this to false because this is an inference only config
finetune_keys: null
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
use_checkpoint: True
use_fp16: True
image_size: 32 # unused
in_channels: 4
in_channels: 9 # 4 data + 4 downscaled image + 1 mask
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_head_channels: 64 # need to fix for flash-attn
num_heads: 8
use_spatial_transformer: True
use_linear_in_transformer: True
transformer_depth: 1
context_dim: 1024
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
@ -43,7 +49,6 @@ model:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
#attn_type: "vanilla-xformers"
double_z: true
z_channels: 4
resolution: 256
@ -62,7 +67,4 @@ model:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenOpenCLIPEmbedder
params:
freeze: True
layer: "penultimate"
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder

View File

@ -1,4 +1,4 @@
from modules import extra_networks
from modules import extra_networks, shared
import lora
class ExtraNetworkLora(extra_networks.ExtraNetwork):
@ -6,6 +6,12 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork):
super().__init__('lora')
def activate(self, p, params_list):
additional = shared.opts.sd_lora
if additional != "" and additional in lora.available_loras and len([x for x in params_list if x.items[0] == additional]) == 0:
p.all_prompts = [x + f"<lora:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
names = []
multipliers = []
for params in params_list:

View File

@ -57,6 +57,7 @@ class LoraUpDownModule:
def __init__(self):
self.up = None
self.down = None
self.alpha = None
def assign_lora_names_to_compvis_modules(sd_model):
@ -92,6 +93,15 @@ def load_lora(name, filename):
keys_failed_to_match.append(key_diffusers)
continue
lora_module = lora.modules.get(key, None)
if lora_module is None:
lora_module = LoraUpDownModule()
lora.modules[key] = lora_module
if lora_key == "alpha":
lora_module.alpha = weight.item()
continue
if type(sd_module) == torch.nn.Linear:
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
elif type(sd_module) == torch.nn.Conv2d:
@ -104,17 +114,12 @@ def load_lora(name, filename):
module.to(device=devices.device, dtype=devices.dtype)
lora_module = lora.modules.get(key, None)
if lora_module is None:
lora_module = LoraUpDownModule()
lora.modules[key] = lora_module
if lora_key == "lora_up.weight":
lora_module.up = module
elif lora_key == "lora_down.weight":
lora_module.down = module
else:
assert False, f'Bad Lora layer name: {key_diffusers} - must end in lora_up.weight or lora_down.weight'
assert False, f'Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha'
if len(keys_failed_to_match) > 0:
print(f"Failed to match keys when loading Lora {filename}: {keys_failed_to_match}")
@ -161,7 +166,10 @@ def lora_forward(module, input, res):
for lora in loaded_loras:
module = lora.modules.get(lora_layer_name, None)
if module is not None:
res = res + module.up(module.down(input)) * lora.multiplier
if shared.opts.lora_apply_to_outputs and res.shape == input.shape:
res = res + module.up(module.down(res)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
else:
res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
return res

View File

@ -1,9 +1,10 @@
import torch
import gradio as gr
import lora
import extra_networks_lora
import ui_extra_networks_lora
from modules import script_callbacks, ui_extra_networks, extra_networks
from modules import script_callbacks, ui_extra_networks, extra_networks, shared
def unload():
@ -28,3 +29,10 @@ torch.nn.Conv2d.forward = lora.lora_Conv2d_forward
script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules)
script_callbacks.on_script_unloaded(unload)
script_callbacks.on_before_ui(before_ui)
shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
"sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in lora.available_loras]}, refresh=lora.list_available_loras),
"lora_apply_to_outputs": shared.OptionInfo(False, "Apply Lora to outputs rather than inputs when possible (experimental)"),
}))

View File

@ -20,13 +20,14 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
preview = None
for file in previews:
if os.path.isfile(file):
preview = "./file=" + file.replace('\\', '/') + "?mtime=" + str(os.path.getmtime(file))
preview = self.link_preview(file)
break
yield {
"name": name,
"filename": path,
"preview": preview,
"search_term": self.search_terms_from_path(lora_on_disk.filename),
"prompt": json.dumps(f"<lora:{name}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
"local_preview": path + ".png",
}

View File

@ -8,7 +8,7 @@ from basicsr.utils.download_util import load_file_from_url
from tqdm import tqdm
from modules import modelloader, devices, script_callbacks, shared
from modules.shared import cmd_opts, opts
from modules.shared import cmd_opts, opts, state
from swinir_model_arch import SwinIR as net
from swinir_model_arch_v2 import Swin2SR as net2
from modules.upscaler import Upscaler, UpscalerData
@ -145,7 +145,13 @@ def inference(img, model, tile, tile_overlap, window_size, scale):
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
for h_idx in h_idx_list:
if state.interrupted or state.skipped:
break
for w_idx in w_idx_list:
if state.interrupted or state.skipped:
break
in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile]
out_patch = model(in_patch)
out_patch_mask = torch.ones_like(out_patch)

View File

@ -1,9 +1,10 @@
<div class='card' {preview_html} onclick='return cardClicked({tabname}, {prompt}, {allow_negative_prompt})'>
<div class='card' {preview_html} onclick={card_clicked}>
<div class='actions'>
<div class='additional'>
<ul>
<a href="#" title="replace preview image with currently selected in gallery" onclick='return saveCardPreview(event, {tabname}, {local_preview})'>replace preview</a>
<a href="#" title="replace preview image with currently selected in gallery" onclick={save_card_preview}>replace preview</a>
</ul>
<span style="display:none" class='search_term'>{search_term}</span>
</div>
<span class='name'>{name}</span>
</div>

7
html/image-update.svg Normal file
View File

@ -0,0 +1,7 @@
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24">
<filter id='shadow' color-interpolation-filters="sRGB">
<feDropShadow flood-color="black" dx="0" dy="0" flood-opacity="0.9" stdDeviation="0.5"/>
<feDropShadow flood-color="black" dx="0" dy="0" flood-opacity="0.9" stdDeviation="0.5"/>
</filter>
<path style="filter:url(#shadow);" fill="#FFFFFF" d="M13.18 19C13.35 19.72 13.64 20.39 14.03 21H5C3.9 21 3 20.11 3 19V5C3 3.9 3.9 3 5 3H19C20.11 3 21 3.9 21 5V11.18C20.5 11.07 20 11 19.5 11C19.33 11 19.17 11 19 11.03V5H5V19H13.18M11.21 15.83L9.25 13.47L6.5 17H13.03C13.14 15.54 13.73 14.22 14.64 13.19L13.96 12.29L11.21 15.83M19 13.5V12L16.75 14.25L19 16.5V15C20.38 15 21.5 16.12 21.5 17.5C21.5 17.9 21.41 18.28 21.24 18.62L22.33 19.71C22.75 19.08 23 18.32 23 17.5C23 15.29 21.21 13.5 19 13.5M19 20C17.62 20 16.5 18.88 16.5 17.5C16.5 17.1 16.59 16.72 16.76 16.38L15.67 15.29C15.25 15.92 15 16.68 15 17.5C15 19.71 16.79 21.5 19 21.5V23L21.25 20.75L19 18.5V20Z" />
</svg>

After

Width:  |  Height:  |  Size: 989 B

View File

@ -1,7 +1,8 @@
function extensions_apply(_, _){
disable = []
update = []
var disable = []
var update = []
gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x){
if(x.name.startsWith("enable_") && ! x.checked)
disable.push(x.name.substr(7))
@ -16,11 +17,24 @@ function extensions_apply(_, _){
}
function extensions_check(){
var disable = []
gradioApp().querySelectorAll('#extensions input[type="checkbox"]').forEach(function(x){
if(x.name.startsWith("enable_") && ! x.checked)
disable.push(x.name.substr(7))
})
gradioApp().querySelectorAll('#extensions .extension_status').forEach(function(x){
x.innerHTML = "Loading..."
})
return []
var id = randomId()
requestProgress(id, gradioApp().getElementById('extensions_installed_top'), null, function(){
})
return [id, JSON.stringify(disable)]
}
function install_extension_from_index(button, url){

View File

@ -16,7 +16,7 @@ function setupExtraNetworksForTab(tabname){
searchTerm = search.value.toLowerCase()
gradioApp().querySelectorAll('#'+tabname+'_extra_tabs div.card').forEach(function(elem){
text = elem.querySelector('.name').textContent.toLowerCase()
text = elem.querySelector('.name').textContent.toLowerCase() + " " + elem.querySelector('.search_term').textContent.toLowerCase()
elem.style.display = text.indexOf(searchTerm) == -1 ? "none" : ""
})
});
@ -48,10 +48,39 @@ function setupExtraNetworks(){
onUiLoaded(setupExtraNetworks)
var re_extranet = /<([^:]+:[^:]+):[\d\.]+>/;
var re_extranet_g = /\s+<([^:]+:[^:]+):[\d\.]+>/g;
function tryToRemoveExtraNetworkFromPrompt(textarea, text){
var m = text.match(re_extranet)
if(! m) return false
var partToSearch = m[1]
var replaced = false
var newTextareaText = textarea.value.replaceAll(re_extranet_g, function(found, index){
m = found.match(re_extranet);
if(m[1] == partToSearch){
replaced = true;
return ""
}
return found;
})
if(replaced){
textarea.value = newTextareaText
return true;
}
return false
}
function cardClicked(tabname, textToAdd, allowNegativePrompt){
var textarea = allowNegativePrompt ? activePromptTextarea[tabname] : gradioApp().querySelector("#" + tabname + "_prompt > label > textarea")
textarea.value = textarea.value + " " + textToAdd
if(! tryToRemoveExtraNetworkFromPrompt(textarea, textToAdd)){
textarea.value = textarea.value + " " + textToAdd
}
updateInput(textarea)
}
@ -67,3 +96,12 @@ function saveCardPreview(event, tabname, filename){
event.stopPropagation()
event.preventDefault()
}
function extraNetworksSearchButton(tabs_id, event){
searchTextarea = gradioApp().querySelector("#" + tabs_id + ' > div > textarea')
button = event.target
text = button.classList.contains("search-all") ? "" : button.textContent.trim()
searchTextarea.value = text
updateInput(searchTextarea)
}

View File

@ -17,7 +17,7 @@ titles = {
"\u2199\ufe0f": "Read generation parameters from prompt or last generation if prompt is empty into user interface.",
"\u{1f4c2}": "Open images output directory",
"\u{1f4be}": "Save style",
"\U0001F5D1": "Clear prompt",
"\u{1f5d1}": "Clear prompt",
"\u{1f4cb}": "Apply selected styles to current prompt",
"\u{1f4d2}": "Paste available values into the field",
"\u{1f3b4}": "Show extra networks",
@ -50,7 +50,7 @@ titles = {
"None": "Do not do anything special",
"Prompt matrix": "Separate prompts into parts using vertical pipe character (|) and the script will create a picture for every combination of them (except for the first part, which will be present in all combinations)",
"X/Y plot": "Create a grid where images will have different parameters. Use inputs below to specify which parameters will be shared by columns and rows",
"X/Y/Z plot": "Create grid(s) where images will have different parameters. Use inputs below to specify which parameters will be shared by columns and rows",
"Custom code": "Run Python code. Advanced user only. Must run program with --allow-code for this to work",
"Prompt S/R": "Separate a list of words with commas, and the first word will be used as a keyword: script will search for this word in the prompt, and replace it with others",

View File

@ -104,11 +104,6 @@ function create_tab_index_args(tabId, args){
return res
}
function get_extras_tab_index(){
const [,,...args] = [...arguments]
return [get_tab_index('mode_extras'), get_tab_index('extras_resize_mode'), ...args]
}
function get_img2img_tab_index() {
let res = args_to_array(arguments)
res.splice(-2)
@ -196,6 +191,28 @@ function confirm_clear_prompt(prompt, negative_prompt) {
return [prompt, negative_prompt]
}
promptTokecountUpdateFuncs = {}
function recalculatePromptTokens(name){
if(promptTokecountUpdateFuncs[name]){
promptTokecountUpdateFuncs[name]()
}
}
function recalculate_prompts_txt2img(){
recalculatePromptTokens('txt2img_prompt')
recalculatePromptTokens('txt2img_neg_prompt')
return args_to_array(arguments);
}
function recalculate_prompts_img2img(){
recalculatePromptTokens('img2img_prompt')
recalculatePromptTokens('img2img_neg_prompt')
return args_to_array(arguments);
}
opts = {}
onUiUpdate(function(){
if(Object.keys(opts).length != 0) return;
@ -237,14 +254,12 @@ onUiUpdate(function(){
return
}
prompt.parentElement.insertBefore(counter, prompt)
counter.classList.add("token-counter")
prompt.parentElement.style.position = "relative"
textarea.addEventListener("input", function(){
update_token_counter(id_button);
});
promptTokecountUpdateFuncs[id] = function(){ update_token_counter(id_button); }
textarea.addEventListener("input", promptTokecountUpdateFuncs[id]);
}
registerTextarea('txt2img_prompt', 'txt2img_token_counter', 'txt2img_token_button')
@ -278,7 +293,7 @@ onOptionsChanged(function(){
let txt2img_textarea, img2img_textarea = undefined;
let wait_time = 800
let token_timeout;
let token_timeouts = {};
function update_txt2img_tokens(...args) {
update_token_counter("txt2img_token_button")
@ -295,9 +310,9 @@ function update_img2img_tokens(...args) {
}
function update_token_counter(button_id) {
if (token_timeout)
clearTimeout(token_timeout);
token_timeout = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time);
if (token_timeouts[button_id])
clearTimeout(token_timeouts[button_id]);
token_timeouts[button_id] = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time);
}
function restart_reload(){
@ -314,3 +329,10 @@ function updateInput(target){
Object.defineProperty(e, "target", {value: target})
target.dispatchEvent(e);
}
var desiredCheckpointName = null;
function selectCheckpoint(name){
desiredCheckpointName = name;
gradioApp().getElementById('change_checkpoint').click()
}

View File

@ -17,6 +17,37 @@ stored_commit_hash = None
skip_install = False
def check_python_version():
is_windows = platform.system() == "Windows"
major = sys.version_info.major
minor = sys.version_info.minor
micro = sys.version_info.micro
if is_windows:
supported_minors = [10]
else:
supported_minors = [7, 8, 9, 10, 11]
if not (major == 3 and minor in supported_minors):
import modules.errors
modules.errors.print_error_explanation(f"""
INCOMPATIBLE PYTHON VERSION
This program is tested with 3.10.6 Python, but you have {major}.{minor}.{micro}.
If you encounter an error with "RuntimeError: Couldn't install torch." message,
or any other error regarding unsuccessful package (library) installation,
please downgrade (or upgrade) to the latest version of 3.10 Python
and delete current Python and "venv" folder in WebUI's directory.
You can download 3.10 Python from here: https://www.python.org/downloads/release/python-3109/
{"Alternatively, use a binary release of WebUI: https://github.com/AUTOMATIC1111/stable-diffusion-webui/releases" if is_windows else ""}
Use --skip-python-version-check to suppress this warning.
""")
def commit_hash():
global stored_commit_hash
@ -48,10 +79,19 @@ def extract_opt(args, name):
return args, is_present, opt
def run(command, desc=None, errdesc=None, custom_env=None):
def run(command, desc=None, errdesc=None, custom_env=None, live=False):
if desc is not None:
print(desc)
if live:
result = subprocess.run(command, shell=True, env=os.environ if custom_env is None else custom_env)
if result.returncode != 0:
raise RuntimeError(f"""{errdesc or 'Error running command'}.
Command: {command}
Error code: {result.returncode}""")
return ""
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, env=os.environ if custom_env is None else custom_env)
if result.returncode != 0:
@ -108,18 +148,18 @@ def git_clone(url, dir, name, commithash=None):
if commithash is None:
return
current_hash = run(f'"{git}" -C {dir} rev-parse HEAD', None, f"Couldn't determine {name}'s hash: {commithash}").strip()
current_hash = run(f'"{git}" -C "{dir}" rev-parse HEAD', None, f"Couldn't determine {name}'s hash: {commithash}").strip()
if current_hash == commithash:
return
run(f'"{git}" -C {dir} fetch', f"Fetching updates for {name}...", f"Couldn't fetch {name}")
run(f'"{git}" -C {dir} checkout {commithash}', f"Checking out commit for {name} with hash: {commithash}...", f"Couldn't checkout commit {commithash} for {name}")
run(f'"{git}" -C "{dir}" fetch', f"Fetching updates for {name}...", f"Couldn't fetch {name}")
run(f'"{git}" -C "{dir}" checkout {commithash}', f"Checking out commit for {name} with hash: {commithash}...", f"Couldn't checkout commit {commithash} for {name}")
return
run(f'"{git}" clone "{url}" "{dir}"', f"Cloning {name} into {dir}...", f"Couldn't clone {name}")
if commithash is not None:
run(f'"{git}" -C {dir} checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}")
run(f'"{git}" -C "{dir}" checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}")
def version_check(commit):
@ -179,16 +219,15 @@ def run_extensions_installers(settings_file):
def prepare_environment():
global skip_install
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113")
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.13.1+cu117 torchvision==0.14.1+cu117 --extra-index-url https://download.pytorch.org/whl/cu117")
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
xformers_package = os.environ.get('XFORMERS_PACKAGE', 'xformers==0.0.16rc425')
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1")
openclip_package = os.environ.get('OPENCLIP_PACKAGE', "git+https://github.com/mlfoundations/open_clip.git@bb6e834e9c70d9c27d0dc3ecedeebeaeb1ffad6b")
xformers_windows_package = os.environ.get('XFORMERS_WINDOWS_PACKAGE', 'https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl')
stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/Stability-AI/stablediffusion.git")
taming_transformers_repo = os.environ.get('TAMING_TRANSFORMERS_REPO', "https://github.com/CompVis/taming-transformers.git")
k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git')
@ -209,20 +248,25 @@ def prepare_environment():
sys.argv, _ = extract_arg(sys.argv, '-f')
sys.argv, skip_torch_cuda_test = extract_arg(sys.argv, '--skip-torch-cuda-test')
sys.argv, skip_python_version_check = extract_arg(sys.argv, '--skip-python-version-check')
sys.argv, reinstall_xformers = extract_arg(sys.argv, '--reinstall-xformers')
sys.argv, reinstall_torch = extract_arg(sys.argv, '--reinstall-torch')
sys.argv, update_check = extract_arg(sys.argv, '--update-check')
sys.argv, run_tests, test_dir = extract_opt(sys.argv, '--tests')
sys.argv, skip_install = extract_arg(sys.argv, '--skip-install')
xformers = '--xformers' in sys.argv
ngrok = '--ngrok' in sys.argv
if not skip_python_version_check:
check_python_version()
commit = commit_hash()
print(f"Python {sys.version}")
print(f"Commit hash: {commit}")
if not is_installed("torch") or not is_installed("torchvision"):
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch")
if reinstall_torch or not is_installed("torch") or not is_installed("torchvision"):
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch", live=True)
if not skip_torch_cuda_test:
run_python("import torch; assert torch.cuda.is_available(), 'Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check'")
@ -239,14 +283,14 @@ def prepare_environment():
if (not is_installed("xformers") or reinstall_xformers) and xformers:
if platform.system() == "Windows":
if platform.python_version().startswith("3.10"):
run_pip(f"install -U -I --no-deps {xformers_windows_package}", "xformers")
run_pip(f"install -U -I --no-deps {xformers_package}", "xformers")
else:
print("Installation of xformers is not supported in this version of Python.")
print("You can also check this and build manually: https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Xformers#building-xformers-on-windows-by-duckness")
if not is_installed("xformers"):
exit(0)
elif platform.system() == "Linux":
run_pip("install xformers", "xformers")
run_pip(f"install {xformers_package}", "xformers")
if not is_installed("pyngrok") and ngrok:
run_pip("install pyngrok", "ngrok")

View File

@ -11,18 +11,20 @@ from fastapi.security import HTTPBasic, HTTPBasicCredentials
from secrets import compare_digest
import modules.shared as shared
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing
from modules.api.models import *
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.extras import run_extras
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
from modules.textual_inversion.preprocess import preprocess
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
from PIL import PngImagePlugin,Image
from modules.sd_models import checkpoints_list, find_checkpoint_config
from modules.sd_models import checkpoints_list
from modules.sd_models_config import find_checkpoint_config_near_filename
from modules.realesrgan_model import get_realesrgan_models
from modules import devices
from typing import List
import piexif
import piexif.helper
def upscaler_to_index(name: str):
try:
@ -45,32 +47,46 @@ def validate_sampler_name(name):
def setUpscalers(req: dict):
reqDict = vars(req)
reqDict['extras_upscaler_1'] = upscaler_to_index(req.upscaler_1)
reqDict['extras_upscaler_2'] = upscaler_to_index(req.upscaler_2)
reqDict.pop('upscaler_1')
reqDict.pop('upscaler_2')
reqDict['extras_upscaler_1'] = reqDict.pop('upscaler_1', None)
reqDict['extras_upscaler_2'] = reqDict.pop('upscaler_2', None)
return reqDict
def decode_base64_to_image(encoding):
if encoding.startswith("data:image/"):
encoding = encoding.split(";")[1].split(",")[1]
return Image.open(BytesIO(base64.b64decode(encoding)))
try:
image = Image.open(BytesIO(base64.b64decode(encoding)))
return image
except Exception as err:
raise HTTPException(status_code=500, detail="Invalid encoded image")
def encode_pil_to_base64(image):
with io.BytesIO() as output_bytes:
# Copy any text-only metadata
use_metadata = False
metadata = PngImagePlugin.PngInfo()
for key, value in image.info.items():
if isinstance(key, str) and isinstance(value, str):
metadata.add_text(key, value)
use_metadata = True
if opts.samples_format.lower() == 'png':
use_metadata = False
metadata = PngImagePlugin.PngInfo()
for key, value in image.info.items():
if isinstance(key, str) and isinstance(value, str):
metadata.add_text(key, value)
use_metadata = True
image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality)
elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"):
parameters = image.info.get('parameters', None)
exif_bytes = piexif.dump({
"Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") }
})
if opts.samples_format.lower() in ("jpg", "jpeg"):
image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality)
else:
image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality)
else:
raise HTTPException(status_code=500, detail="Invalid image format")
image.save(
output_bytes, "PNG", pnginfo=(metadata if use_metadata else None)
)
bytes_data = output_bytes.getvalue()
return base64.b64encode(bytes_data)
def api_middleware(app: FastAPI):
@ -244,7 +260,7 @@ class Api:
reqDict['image'] = decode_base64_to_image(reqDict['image'])
with self.queue_lock:
result = run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict)
result = postprocessing.run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict)
return ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])
@ -260,7 +276,7 @@ class Api:
reqDict.pop('imageList')
with self.queue_lock:
result = run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict)
result = postprocessing.run_extras(extras_mode=1, image="", input_dir="", output_dir="", save_output=False, **reqDict)
return ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])
@ -360,16 +376,19 @@ class Api:
return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers]
def get_upscalers(self):
upscalers = []
for upscaler in shared.sd_upscalers:
u = upscaler.scaler
upscalers.append({"name":u.name, "model_name":u.model_name, "model_path":u.model_path, "model_url":u.model_url})
return upscalers
return [
{
"name": upscaler.name,
"model_name": upscaler.scaler.model_name,
"model_path": upscaler.data_path,
"model_url": None,
"scale": upscaler.scale,
}
for upscaler in shared.sd_upscalers
]
def get_sd_models(self):
return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config(x)} for x in checkpoints_list.values()]
return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config_near_filename(x)} for x in checkpoints_list.values()]
def get_hypernetworks(self):
return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]

View File

@ -220,6 +220,7 @@ class UpscalerItem(BaseModel):
model_name: Optional[str] = Field(title="Model Name")
model_path: Optional[str] = Field(title="Path")
model_url: Optional[str] = Field(title="URL")
scale: Optional[float] = Field(title="Scale")
class SDModelItem(BaseModel):
title: str = Field(title="Title")
@ -227,7 +228,7 @@ class SDModelItem(BaseModel):
hash: Optional[str] = Field(title="Short hash")
sha256: Optional[str] = Field(title="sha256 hash")
filename: str = Field(title="Filename")
config: str = Field(title="Config file")
config: Optional[str] = Field(title="Config file")
class HypernetworkItem(BaseModel):
name: str = Field(title="Name")

View File

@ -8,7 +8,7 @@ import torch
import modules.face_restoration
import modules.shared
from modules import shared, devices, modelloader
from modules.paths import script_path, models_path
from modules.paths import models_path
# codeformer people made a choice to include modified basicsr library to their project which makes
# it utterly impossible to use it alongside with other libraries that also use basicsr, like GFPGAN.

View File

@ -2,6 +2,8 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
from modules import devices
# see https://github.com/AUTOMATIC1111/TorchDeepDanbooru for more
@ -196,7 +198,7 @@ class DeepDanbooruModel(nn.Module):
t_358, = inputs
t_359 = t_358.permute(*[0, 3, 1, 2])
t_359_padded = F.pad(t_359, [2, 3, 2, 3], value=0)
t_360 = self.n_Conv_0(t_359_padded)
t_360 = self.n_Conv_0(t_359_padded.to(self.n_Conv_0.bias.dtype) if devices.unet_needs_upcast else t_359_padded)
t_361 = F.relu(t_360)
t_361 = F.pad(t_361, [0, 1, 0, 1], value=float('-inf'))
t_362 = self.n_MaxPool_0(t_361)

View File

@ -2,6 +2,7 @@ import sys, os, shlex
import contextlib
import torch
from modules import errors
from modules.sd_hijack_utils import CondFunc
from packaging import version
@ -34,14 +35,18 @@ def get_cuda_device_string():
return "cuda"
def get_optimal_device():
def get_optimal_device_name():
if torch.cuda.is_available():
return torch.device(get_cuda_device_string())
return get_cuda_device_string()
if has_mps():
return torch.device("mps")
return "mps"
return cpu
return "cpu"
def get_optimal_device():
return torch.device(get_optimal_device_name())
def get_device_for(task):
@ -79,6 +84,16 @@ cpu = torch.device("cpu")
device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None
dtype = torch.float16
dtype_vae = torch.float16
dtype_unet = torch.float16
unet_needs_upcast = False
def cond_cast_unet(input):
return input.to(dtype_unet) if unet_needs_upcast else input
def cond_cast_float(input):
return input.float() if unet_needs_upcast else input
def randn(seed, shape):
@ -106,6 +121,10 @@ def autocast(disable=False):
return torch.autocast("cuda")
def without_autocast(disable=False):
return torch.autocast("cuda", enabled=False) if torch.is_autocast_enabled() and not disable else contextlib.nullcontext()
class NansException(Exception):
pass
@ -123,7 +142,7 @@ def test_for_nans(x, where):
message = "A tensor with all NaNs was produced in Unet."
if not shared.cmd_opts.no_half:
message += " This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try using --no-half commandline argument to fix this."
message += " This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try setting the \"Upcast cross attention layer to float32\" option in Settings > Stable Diffusion or using the --no-half commandline argument to fix this."
elif where == "vae":
message = "A tensor with all NaNs was produced in VAE."
@ -133,39 +152,12 @@ def test_for_nans(x, where):
else:
message = "A tensor with all NaNs was produced."
message += " Use --disable-nan-check commandline argument to disable this check."
raise NansException(message)
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
orig_tensor_to = torch.Tensor.to
def tensor_to_fix(self, *args, **kwargs):
if self.device.type != 'mps' and \
((len(args) > 0 and isinstance(args[0], torch.device) and args[0].type == 'mps') or \
(isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps')):
self = self.contiguous()
return orig_tensor_to(self, *args, **kwargs)
# MPS workaround for https://github.com/pytorch/pytorch/issues/80800
orig_layer_norm = torch.nn.functional.layer_norm
def layer_norm_fix(*args, **kwargs):
if len(args) > 0 and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps':
args = list(args)
args[0] = args[0].contiguous()
return orig_layer_norm(*args, **kwargs)
# MPS workaround for https://github.com/pytorch/pytorch/issues/90532
orig_tensor_numpy = torch.Tensor.numpy
def numpy_fix(self, *args, **kwargs):
if self.requires_grad:
self = self.detach()
return orig_tensor_numpy(self, *args, **kwargs)
# MPS workaround for https://github.com/pytorch/pytorch/issues/89784
orig_cumsum = torch.cumsum
orig_Tensor_cumsum = torch.Tensor.cumsum
def cumsum_fix(input, cumsum_func, *args, **kwargs):
if input.device.type == 'mps':
output_dtype = kwargs.get('dtype', input.dtype)
@ -179,14 +171,20 @@ def cumsum_fix(input, cumsum_func, *args, **kwargs):
if has_mps():
if version.parse(torch.__version__) < version.parse("1.13"):
# PyTorch 1.13 doesn't need these fixes but unfortunately is slower and has regressions that prevent training from working
torch.Tensor.to = tensor_to_fix
torch.nn.functional.layer_norm = layer_norm_fix
torch.Tensor.numpy = numpy_fix
# MPS workaround for https://github.com/pytorch/pytorch/issues/79383
CondFunc('torch.Tensor.to', lambda orig_func, self, *args, **kwargs: orig_func(self.contiguous(), *args, **kwargs),
lambda _, self, *args, **kwargs: self.device.type != 'mps' and (args and isinstance(args[0], torch.device) and args[0].type == 'mps' or isinstance(kwargs.get('device'), torch.device) and kwargs['device'].type == 'mps'))
# MPS workaround for https://github.com/pytorch/pytorch/issues/80800
CondFunc('torch.nn.functional.layer_norm', lambda orig_func, *args, **kwargs: orig_func(*([args[0].contiguous()] + list(args[1:])), **kwargs),
lambda _, *args, **kwargs: args and isinstance(args[0], torch.Tensor) and args[0].device.type == 'mps')
# MPS workaround for https://github.com/pytorch/pytorch/issues/90532
CondFunc('torch.Tensor.numpy', lambda orig_func, self, *args, **kwargs: orig_func(self.detach(), *args, **kwargs), lambda _, self, *args, **kwargs: self.requires_grad)
elif version.parse(torch.__version__) > version.parse("1.13.1"):
cumsum_needs_int_fix = not torch.Tensor([1,2]).to(torch.device("mps")).equal(torch.ShortTensor([1,1]).to(torch.device("mps")).cumsum(0))
cumsum_needs_bool_fix = not torch.BoolTensor([True,True]).to(device=torch.device("mps"), dtype=torch.int64).equal(torch.BoolTensor([True,False]).to(torch.device("mps")).cumsum(0))
torch.cumsum = lambda input, *args, **kwargs: ( cumsum_fix(input, orig_cumsum, *args, **kwargs) )
torch.Tensor.cumsum = lambda self, *args, **kwargs: ( cumsum_fix(self, orig_Tensor_cumsum, *args, **kwargs) )
orig_narrow = torch.narrow
torch.narrow = lambda *args, **kwargs: ( orig_narrow(*args, **kwargs).clone() )
cumsum_fix_func = lambda orig_func, input, *args, **kwargs: cumsum_fix(input, orig_func, *args, **kwargs)
CondFunc('torch.cumsum', cumsum_fix_func, None)
CondFunc('torch.Tensor.cumsum', cumsum_fix_func, None)
CondFunc('torch.narrow', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).clone(), None)

View File

@ -24,6 +24,18 @@ See https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#stable
""")
already_displayed = {}
def display_once(e: Exception, task):
if task in already_displayed:
return
display(e, task)
already_displayed[task] = 1
def run(code, task):
try:
code()

View File

@ -7,9 +7,11 @@ import git
from modules import paths, shared
extensions = []
extensions_dir = os.path.join(paths.script_path, "extensions")
extensions_dir = os.path.join(paths.data_path, "extensions")
extensions_builtin_dir = os.path.join(paths.script_path, "extensions-builtin")
if not os.path.exists(extensions_dir):
os.makedirs(extensions_dir)
def active():
return [x for x in extensions if x.enabled]

View File

@ -1,4 +1,4 @@
from modules import extra_networks
from modules import extra_networks, shared, extra_networks
from modules.hypernetworks import hypernetwork
@ -7,6 +7,12 @@ class ExtraNetworkHypernet(extra_networks.ExtraNetwork):
super().__init__('hypernet')
def activate(self, p, params_list):
additional = shared.opts.sd_hypernetwork
if additional != "" and additional in shared.hypernetworks and len([x for x in params_list if x.items[0] == additional]) == 0:
p.all_prompts = [x + f"<hypernet:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
names = []
multipliers = []
for params in params_list:

View File

@ -1,231 +1,16 @@
from __future__ import annotations
import math
import os
import re
import sys
import traceback
import shutil
import numpy as np
from PIL import Image
import torch
import tqdm
from typing import Callable, List, OrderedDict, Tuple
from functools import partial
from dataclasses import dataclass
from modules import processing, shared, images, devices, sd_models, sd_samplers, sd_vae
from modules.shared import opts
import modules.gfpgan_model
from modules.ui import plaintext_to_html
import modules.codeformer_model
from modules import shared, images, sd_models, sd_vae, sd_models_config
from modules.ui_common import plaintext_to_html
import gradio as gr
import safetensors.torch
class LruCache(OrderedDict):
@dataclass(frozen=True)
class Key:
image_hash: int
info_hash: int
args_hash: int
@dataclass
class Value:
image: Image.Image
info: str
def __init__(self, max_size: int = 5, *args, **kwargs):
super().__init__(*args, **kwargs)
self._max_size = max_size
def get(self, key: LruCache.Key) -> LruCache.Value:
ret = super().get(key)
if ret is not None:
self.move_to_end(key) # Move to end of eviction list
return ret
def put(self, key: LruCache.Key, value: LruCache.Value) -> None:
self[key] = value
while len(self) > self._max_size:
self.popitem(last=False)
cached_images: LruCache = LruCache(max_size=5)
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
devices.torch_gc()
shared.state.begin()
shared.state.job = 'extras'
imageArr = []
# Also keep track of original file names
imageNameArr = []
outputs = []
if extras_mode == 1:
#convert file to pillow image
for img in image_folder:
image = Image.open(img)
imageArr.append(image)
imageNameArr.append(os.path.splitext(img.orig_name)[0])
elif extras_mode == 2:
assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled'
if input_dir == '':
return outputs, "Please select an input directory.", ''
image_list = shared.listfiles(input_dir)
for img in image_list:
try:
image = Image.open(img)
except Exception:
continue
imageArr.append(image)
imageNameArr.append(img)
else:
imageArr.append(image)
imageNameArr.append(None)
if extras_mode == 2 and output_dir != '':
outpath = output_dir
else:
outpath = opts.outdir_samples or opts.outdir_extras_samples
# Extra operation definitions
def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
shared.state.job = 'extras-gfpgan'
restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8))
res = Image.fromarray(restored_img)
if gfpgan_visibility < 1.0:
res = Image.blend(image, res, gfpgan_visibility)
info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n"
return (res, info)
def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
shared.state.job = 'extras-codeformer'
restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight)
res = Image.fromarray(restored_img)
if codeformer_visibility < 1.0:
res = Image.blend(image, res, codeformer_visibility)
info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n"
return (res, info)
def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop):
shared.state.job = 'extras-upscale'
upscaler = shared.sd_upscalers[scaler_index]
res = upscaler.scaler.upscale(image, resize, upscaler.data_path)
if mode == 1 and crop:
cropped = Image.new("RGB", (resize_w, resize_h))
cropped.paste(res, box=(resize_w // 2 - res.width // 2, resize_h // 2 - res.height // 2))
res = cropped
return res
def run_prepare_crop(image: Image.Image, info: str) -> Tuple[Image.Image, str]:
# Actual crop happens in run_upscalers_blend, this just sets upscaling_resize and adds info text
nonlocal upscaling_resize
if resize_mode == 1:
upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height)
crop_info = " (crop)" if upscaling_crop else ""
info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n"
return (image, info)
@dataclass
class UpscaleParams:
upscaler_idx: int
blend_alpha: float
def run_upscalers_blend(params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]:
blended_result: Image.Image = None
image_hash: str = hash(np.array(image.getdata()).tobytes())
for upscaler in params:
upscale_args = (upscaler.upscaler_idx, upscaling_resize, resize_mode,
upscaling_resize_w, upscaling_resize_h, upscaling_crop)
cache_key = LruCache.Key(image_hash=image_hash,
info_hash=hash(info),
args_hash=hash(upscale_args))
cached_entry = cached_images.get(cache_key)
if cached_entry is None:
res = upscale(image, *upscale_args)
info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n"
cached_images.put(cache_key, LruCache.Value(image=res, info=info))
else:
res, info = cached_entry.image, cached_entry.info
if blended_result is None:
blended_result = res
else:
blended_result = Image.blend(blended_result, res, upscaler.blend_alpha)
return (blended_result, info)
# Build a list of operations to run
facefix_ops: List[Callable] = []
facefix_ops += [run_gfpgan] if gfpgan_visibility > 0 else []
facefix_ops += [run_codeformer] if codeformer_visibility > 0 else []
upscale_ops: List[Callable] = []
upscale_ops += [run_prepare_crop] if resize_mode == 1 else []
if upscaling_resize != 0:
step_params: List[UpscaleParams] = []
step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_1, blend_alpha=1.0))
if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0:
step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility))
upscale_ops.append(partial(run_upscalers_blend, step_params))
extras_ops: List[Callable] = (upscale_ops + facefix_ops) if upscale_first else (facefix_ops + upscale_ops)
for image, image_name in zip(imageArr, imageNameArr):
if image is None:
return outputs, "Please select an input image.", ''
shared.state.textinfo = f'Processing image {image_name}'
existing_pnginfo = image.info or {}
image = image.convert("RGB")
info = ""
# Run each operation on each image
for op in extras_ops:
image, info = op(image, info)
if opts.use_original_name_batch and image_name is not None:
basename = os.path.splitext(os.path.basename(image_name))[0]
else:
basename = ''
if opts.enable_pnginfo: # append info before save
image.info = existing_pnginfo
image.info["extras"] = info
if save_output:
# Add upscaler name as a suffix.
suffix = f"-{shared.sd_upscalers[extras_upscaler_1].name}" if shared.opts.use_upscaler_name_as_suffix else ""
# Add second upscaler if applicable.
if suffix and extras_upscaler_2 and extras_upscaler_2_visibility:
suffix += f"-{shared.sd_upscalers[extras_upscaler_2].name}"
images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True,
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None, suffix=suffix)
if extras_mode != 2 or show_extras_results :
outputs.append(image)
devices.torch_gc()
return outputs, plaintext_to_html(info), ''
def clear_cache():
cached_images.clear()
def run_pnginfo(image):
if image is None:
@ -252,7 +37,7 @@ def run_pnginfo(image):
def create_config(ckpt_result, config_source, a, b, c):
def config(x):
res = sd_models.find_checkpoint_config(x) if x else None
res = sd_models_config.find_checkpoint_config_near_filename(x) if x else None
return res if res != shared.sd_default_config else None
if config_source == 0:
@ -347,6 +132,7 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_
tertiary_model_info = sd_models.checkpoints_list[tertiary_model_name] if theta_func1 else None
result_is_inpainting_model = False
result_is_instruct_pix2pix_model = False
if theta_func2:
shared.state.textinfo = f"Loading B"
@ -400,14 +186,19 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_
if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]:
if a.shape[1] == 4 and b.shape[1] == 9:
raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.")
if a.shape[1] == 4 and b.shape[1] == 8:
raise RuntimeError("When merging instruct-pix2pix model with a normal one, A must be the instruct-pix2pix model.")
assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}"
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)
result_is_inpainting_model = True
if a.shape[1] == 8 and b.shape[1] == 4:#If we have an Instruct-Pix2Pix model...
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)#Merge only the vectors the models have in common. Otherwise we get an error due to dimension mismatch.
result_is_instruct_pix2pix_model = True
else:
assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}"
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)
result_is_inpainting_model = True
else:
theta_0[key] = theta_func2(a, b, multiplier)
theta_0[key] = to_half(theta_0[key], save_as_half)
shared.state.sampling_step += 1
@ -441,6 +232,7 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_
filename = filename_generator() if custom_name == '' else custom_name
filename += ".inpainting" if result_is_inpainting_model else ""
filename += ".instruct-pix2pix" if result_is_instruct_pix2pix_model else ""
filename += "." + checkpoint_format
output_modelname = os.path.join(ckpt_dir, filename)

View File

@ -1,4 +1,5 @@
import base64
import html
import io
import math
import os
@ -6,24 +7,33 @@ import re
from pathlib import Path
import gradio as gr
from modules.shared import script_path
from modules.paths import data_path
from modules import shared, ui_tempdir, script_callbacks
import tempfile
from PIL import Image
re_param_code = r'\s*([\w ]+):\s*("(?:\\|\"|[^\"])+"|[^,]*)(?:,|$)'
re_param_code = r'\s*([\w ]+):\s*("(?:\\"[^,]|\\"|\\|[^\"])+"|[^,]*)(?:,|$)'
re_param = re.compile(re_param_code)
re_params = re.compile(r"^(?:" + re_param_code + "){3,}$")
re_imagesize = re.compile(r"^(\d+)x(\d+)$")
re_hypernet_hash = re.compile("\(([0-9a-f]+)\)$")
type_of_gr_update = type(gr.update())
paste_fields = {}
bind_list = []
registered_param_bindings = []
class ParamBinding:
def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None):
self.paste_button = paste_button
self.tabname = tabname
self.source_text_component = source_text_component
self.source_image_component = source_image_component
self.source_tabname = source_tabname
self.override_settings_component = override_settings_component
def reset():
paste_fields.clear()
bind_list.clear()
def quote(text):
@ -75,26 +85,6 @@ def add_paste_fields(tabname, init_img, fields):
modules.ui.img2img_paste_fields = fields
def integrate_settings_paste_fields(component_dict):
from modules import ui
settings_map = {
'CLIP_stop_at_last_layers': 'Clip skip',
'inpainting_mask_weight': 'Conditional mask weight',
'sd_model_checkpoint': 'Model hash',
'eta_noise_seed_delta': 'ENSD',
'initial_noise_multiplier': 'Noise multiplier',
}
settings_paste_fields = [
(component_dict[k], lambda d, k=k, v=v: ui.apply_setting(k, d.get(v, None)))
for k, v in settings_map.items()
]
for tabname, info in paste_fields.items():
if info["fields"] is not None:
info["fields"] += settings_paste_fields
def create_buttons(tabs_list):
buttons = {}
for tab in tabs_list:
@ -102,9 +92,60 @@ def create_buttons(tabs_list):
return buttons
#if send_generate_info is a tab name, mean generate_info comes from the params fields of the tab
def bind_buttons(buttons, send_image, send_generate_info):
bind_list.append([buttons, send_image, send_generate_info])
"""old function for backwards compatibility; do not use this, use register_paste_params_button"""
for tabname, button in buttons.items():
source_text_component = send_generate_info if isinstance(send_generate_info, gr.components.Component) else None
source_tabname = send_generate_info if isinstance(send_generate_info, str) else None
register_paste_params_button(ParamBinding(paste_button=button, tabname=tabname, source_text_component=source_text_component, source_image_component=send_image, source_tabname=source_tabname))
def register_paste_params_button(binding: ParamBinding):
registered_param_bindings.append(binding)
def connect_paste_params_buttons():
binding: ParamBinding
for binding in registered_param_bindings:
destination_image_component = paste_fields[binding.tabname]["init_img"]
fields = paste_fields[binding.tabname]["fields"]
destination_width_component = next(iter([field for field, name in fields if name == "Size-1"] if fields else []), None)
destination_height_component = next(iter([field for field, name in fields if name == "Size-2"] if fields else []), None)
if binding.source_image_component and destination_image_component:
if isinstance(binding.source_image_component, gr.Gallery):
func = send_image_and_dimensions if destination_width_component else image_from_url_text
jsfunc = "extract_image_from_gallery"
else:
func = send_image_and_dimensions if destination_width_component else lambda x: x
jsfunc = None
binding.paste_button.click(
fn=func,
_js=jsfunc,
inputs=[binding.source_image_component],
outputs=[destination_image_component, destination_width_component, destination_height_component] if destination_width_component else [destination_image_component],
)
if binding.source_text_component is not None and fields is not None:
connect_paste(binding.paste_button, fields, binding.source_text_component, binding.override_settings_component, binding.tabname)
if binding.source_tabname is not None and fields is not None:
paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (["Seed"] if shared.opts.send_seed else [])
binding.paste_button.click(
fn=lambda *x: x,
inputs=[field for field, name in paste_fields[binding.source_tabname]["fields"] if name in paste_field_names],
outputs=[field for field, name in fields if name in paste_field_names],
)
binding.paste_button.click(
fn=None,
_js=f"switch_to_{binding.tabname}",
inputs=None,
outputs=None,
)
def send_image_and_dimensions(x):
@ -123,49 +164,6 @@ def send_image_and_dimensions(x):
return img, w, h
def run_bind():
for buttons, source_image_component, send_generate_info in bind_list:
for tab in buttons:
button = buttons[tab]
destination_image_component = paste_fields[tab]["init_img"]
fields = paste_fields[tab]["fields"]
destination_width_component = next(iter([field for field, name in fields if name == "Size-1"] if fields else []), None)
destination_height_component = next(iter([field for field, name in fields if name == "Size-2"] if fields else []), None)
if source_image_component and destination_image_component:
if isinstance(source_image_component, gr.Gallery):
func = send_image_and_dimensions if destination_width_component else image_from_url_text
jsfunc = "extract_image_from_gallery"
else:
func = send_image_and_dimensions if destination_width_component else lambda x: x
jsfunc = None
button.click(
fn=func,
_js=jsfunc,
inputs=[source_image_component],
outputs=[destination_image_component, destination_width_component, destination_height_component] if destination_width_component else [destination_image_component],
)
if send_generate_info and fields is not None:
if send_generate_info in paste_fields:
paste_field_names = ['Prompt', 'Negative prompt', 'Steps', 'Face restoration'] + (["Seed"] if shared.opts.send_seed else [])
button.click(
fn=lambda *x: x,
inputs=[field for field, name in paste_fields[send_generate_info]["fields"] if name in paste_field_names],
outputs=[field for field, name in fields if name in paste_field_names],
)
else:
connect_paste(button, fields, send_generate_info)
button.click(
fn=None,
_js=f"switch_to_{tab}",
inputs=None,
outputs=None,
)
def find_hypernetwork_key(hypernet_name, hypernet_hash=None):
"""Determines the config parameter name to use for the hypernet based on the parameters in the infotext.
@ -243,7 +241,7 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
done_with_prompt = False
*lines, lastline = x.strip().split("\n")
if not re_params.match(lastline):
if len(re_param.findall(lastline)) < 3:
lines.append(lastline)
lastline = ''
@ -262,6 +260,7 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
res["Negative prompt"] = negative_prompt
for k, v in re_param.findall(lastline):
v = v[1:-1] if v[0] == '"' and v[-1] == '"' else v
m = re_imagesize.match(v)
if m is not None:
res[k+"-1"] = m.group(1)
@ -286,10 +285,53 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
return res
def connect_paste(button, paste_fields, input_comp, jsfunc=None):
settings_map = {}
infotext_to_setting_name_mapping = [
('Clip skip', 'CLIP_stop_at_last_layers', ),
('Conditional mask weight', 'inpainting_mask_weight'),
('Model hash', 'sd_model_checkpoint'),
('ENSD', 'eta_noise_seed_delta'),
('Noise multiplier', 'initial_noise_multiplier'),
('Eta', 'eta_ancestral'),
('Eta DDIM', 'eta_ddim'),
('Discard penultimate sigma', 'always_discard_next_to_last_sigma')
]
def create_override_settings_dict(text_pairs):
"""creates processing's override_settings parameters from gradio's multiselect
Example input:
['Clip skip: 2', 'Model hash: e6e99610c4', 'ENSD: 31337']
Example output:
{'CLIP_stop_at_last_layers': 2, 'sd_model_checkpoint': 'e6e99610c4', 'eta_noise_seed_delta': 31337}
"""
res = {}
params = {}
for pair in text_pairs:
k, v = pair.split(":", maxsplit=1)
params[k] = v.strip()
for param_name, setting_name in infotext_to_setting_name_mapping:
value = params.get(param_name, None)
if value is None:
continue
res[setting_name] = shared.opts.cast_value(setting_name, value)
return res
def connect_paste(button, paste_fields, input_comp, override_settings_component, tabname):
def paste_func(prompt):
if not prompt and not shared.cmd_opts.hide_ui_dir_config:
filename = os.path.join(script_path, "params.txt")
filename = os.path.join(data_path, "params.txt")
if os.path.exists(filename):
with open(filename, "r", encoding="utf8") as file:
prompt = file.read()
@ -323,9 +365,35 @@ def connect_paste(button, paste_fields, input_comp, jsfunc=None):
return res
if override_settings_component is not None:
def paste_settings(params):
vals = {}
for param_name, setting_name in infotext_to_setting_name_mapping:
v = params.get(param_name, None)
if v is None:
continue
if setting_name == "sd_model_checkpoint" and shared.opts.disable_weights_auto_swap:
continue
v = shared.opts.cast_value(setting_name, v)
current_value = getattr(shared.opts, setting_name, None)
if v == current_value:
continue
vals[param_name] = v
vals_pairs = [f"{k}: {v}" for k, v in vals.items()]
return gr.Dropdown.update(value=vals_pairs, choices=vals_pairs, visible=len(vals_pairs) > 0)
paste_fields = paste_fields + [(override_settings_component, paste_settings)]
button.click(
fn=paste_func,
_js=jsfunc,
_js=f"recalculate_prompts_{tabname}",
inputs=[input_comp],
outputs=[x[0] for x in paste_fields],
)

View File

@ -6,12 +6,11 @@ import facexlib
import gfpgan
import modules.face_restoration
from modules import shared, devices, modelloader
from modules.paths import models_path
from modules import paths, shared, devices, modelloader
model_dir = "GFPGAN"
user_path = None
model_path = os.path.join(models_path, model_dir)
model_path = os.path.join(paths.models_path, model_dir)
model_url = "https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth"
have_gfpgan = False
loaded_gfpgan_model = None

View File

@ -4,8 +4,10 @@ import os.path
import filelock
from modules.paths import data_path
cache_filename = "cache.json"
cache_filename = os.path.join(data_path, "cache.json")
cache_data = None

View File

@ -36,6 +36,8 @@ def image_grid(imgs, batch_size=1, rows=None):
else:
rows = math.sqrt(len(imgs))
rows = round(rows)
if rows > len(imgs):
rows = len(imgs)
cols = math.ceil(len(imgs) / rows)
@ -195,7 +197,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts):
ver_text_heights = [sum([line.size[1] + line_spacing for line in lines]) - line_spacing * len(lines) for lines in
ver_texts]
pad_top = max(hor_text_heights) + line_spacing * 2
pad_top = 0 if sum(hor_text_heights) == 0 else max(hor_text_heights) + line_spacing * 2
result = Image.new("RGB", (im.width + pad_left, im.height + pad_top), "white")
result.paste(im, (pad_left, pad_top))

View File

@ -7,6 +7,7 @@ import numpy as np
from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops
from modules import devices, sd_samplers
from modules.generation_parameters_copypaste import create_override_settings_dict
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, state
import modules.shared as shared
@ -16,11 +17,18 @@ import modules.images as images
import modules.scripts
def process_batch(p, input_dir, output_dir, args):
def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args):
processing.fix_seed(p)
images = shared.listfiles(input_dir)
is_inpaint_batch = False
if inpaint_mask_dir:
inpaint_masks = shared.listfiles(inpaint_mask_dir)
is_inpaint_batch = len(inpaint_masks) > 0
if is_inpaint_batch:
print(f"\nInpaint batch is enabled. {len(inpaint_masks)} masks found.")
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
save_normally = output_dir == ''
@ -43,6 +51,15 @@ def process_batch(p, input_dir, output_dir, args):
img = ImageOps.exif_transpose(img)
p.init_images = [img] * p.batch_size
if is_inpaint_batch:
# try to find corresponding mask for an image using simple filename matching
mask_image_path = os.path.join(inpaint_mask_dir, os.path.basename(image))
# if not found use first one ("same mask for all images" use-case)
if not mask_image_path in inpaint_masks:
mask_image_path = inpaint_masks[0]
mask_image = Image.open(mask_image_path)
p.image_mask = mask_image
proc = modules.scripts.scripts_img2img.run(p, *args)
if proc is None:
proc = process_images(p)
@ -59,7 +76,9 @@ def process_batch(p, input_dir, output_dir, args):
processed_image.save(os.path.join(output_dir, filename))
def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args):
override_settings = create_override_settings_dict(override_settings_texts)
is_batch = mode == 5
if mode == 0: # img2img
@ -126,6 +145,7 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
inpaint_full_res=inpaint_full_res,
inpaint_full_res_padding=inpaint_full_res_padding,
inpainting_mask_invert=inpainting_mask_invert,
override_settings=override_settings,
)
p.scripts = modules.scripts.scripts_txt2img
@ -139,7 +159,7 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
if is_batch:
assert not shared.cmd_opts.hide_ui_dir_config, "Launched with --hide-ui-dir-config, batch img2img disabled"
process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, args)
process_batch(p, img2img_batch_input_dir, img2img_batch_output_dir, img2img_batch_inpaint_mask_dir, args)
processed = Processed(p, [], p.seed, "")
else:

View File

@ -2,6 +2,7 @@ import os
import sys
import traceback
from collections import namedtuple
from pathlib import Path
import re
import torch
@ -11,7 +12,7 @@ from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
import modules.shared as shared
from modules import devices, paths, lowvram, modelloader, errors
from modules import devices, paths, shared, lowvram, modelloader, errors
blip_image_eval_size = 384
clip_model_name = 'ViT-L/14'
@ -20,19 +21,20 @@ Category = namedtuple("Category", ["name", "topn", "items"])
re_topn = re.compile(r"\.top(\d+)\.")
def category_types():
return [f.stem for f in Path(shared.interrogator.content_dir).glob('*.txt')]
def download_default_clip_interrogate_categories(content_dir):
print("Downloading CLIP categories...")
tmpdir = content_dir + "_tmp"
category_types = ["artists", "flavors", "mediums", "movements"]
try:
os.makedirs(tmpdir)
torch.hub.download_url_to_file("https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/artists.txt", os.path.join(tmpdir, "artists.txt"))
torch.hub.download_url_to_file("https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/flavors.txt", os.path.join(tmpdir, "flavors.top3.txt"))
torch.hub.download_url_to_file("https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/mediums.txt", os.path.join(tmpdir, "mediums.txt"))
torch.hub.download_url_to_file("https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/movements.txt", os.path.join(tmpdir, "movements.txt"))
for category_type in category_types:
torch.hub.download_url_to_file(f"https://raw.githubusercontent.com/pharmapsychotic/clip-interrogator/main/clip_interrogator/data/{category_type}.txt", os.path.join(tmpdir, f"{category_type}.txt"))
os.rename(tmpdir, content_dir)
except Exception as e:
@ -51,31 +53,44 @@ class InterrogateModels:
def __init__(self, content_dir):
self.loaded_categories = None
self.skip_categories = []
self.content_dir = content_dir
self.running_on_cpu = devices.device_interrogate == torch.device("cpu")
def categories(self):
if self.loaded_categories is not None:
return self.loaded_categories
self.loaded_categories = []
if not os.path.exists(self.content_dir):
download_default_clip_interrogate_categories(self.content_dir)
if os.path.exists(self.content_dir):
for filename in os.listdir(self.content_dir):
m = re_topn.search(filename)
topn = 1 if m is None else int(m.group(1))
if self.loaded_categories is not None and self.skip_categories == shared.opts.interrogate_clip_skip_categories:
return self.loaded_categories
with open(os.path.join(self.content_dir, filename), "r", encoding="utf8") as file:
self.loaded_categories = []
if os.path.exists(self.content_dir):
self.skip_categories = shared.opts.interrogate_clip_skip_categories
category_types = []
for filename in Path(self.content_dir).glob('*.txt'):
category_types.append(filename.stem)
if filename.stem in self.skip_categories:
continue
m = re_topn.search(filename.stem)
topn = 1 if m is None else int(m.group(1))
with open(filename, "r", encoding="utf8") as file:
lines = [x.strip() for x in file.readlines()]
self.loaded_categories.append(Category(name=filename, topn=topn, items=lines))
self.loaded_categories.append(Category(name=filename.stem, topn=topn, items=lines))
return self.loaded_categories
def create_fake_fairscale(self):
class FakeFairscale:
def checkpoint_wrapper(self):
pass
sys.modules["fairscale.nn.checkpoint.checkpoint_activations"] = FakeFairscale
def load_blip_model(self):
self.create_fake_fairscale()
import models.blip
files = modelloader.load_models(
@ -139,6 +154,8 @@ class InterrogateModels:
def rank(self, image_features, text_array, top_count=1):
import clip
devices.torch_gc()
if shared.opts.interrogate_clip_dict_limit != 0:
text_array = text_array[0:int(shared.opts.interrogate_clip_dict_limit)]

File diff suppressed because it is too large Load Diff

View File

@ -4,7 +4,15 @@ import sys
import modules.safe
script_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
models_path = os.path.join(script_path, "models")
# Parse the --data-dir flag first so we can use it as a base for our other argument default values
parser = argparse.ArgumentParser(add_help=False)
parser.add_argument("--data-dir", type=str, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored",)
cmd_opts_pre = parser.parse_known_args()[0]
data_path = cmd_opts_pre.data_dir
models_path = os.path.join(data_path, "models")
# data_path = cmd_opts_pre.data
sys.path.insert(0, script_path)
# search for directory of stable diffusion in following places
@ -38,3 +46,17 @@ for d, must_exist, what, options in path_dirs:
else:
sys.path.append(d)
paths[what] = d
class Prioritize:
def __init__(self, name):
self.name = name
self.path = None
def __enter__(self):
self.path = sys.path.copy()
sys.path = [paths[self.name]] + sys.path
def __exit__(self, exc_type, exc_val, exc_tb):
sys.path = self.path
self.path = None

103
modules/postprocessing.py Normal file
View File

@ -0,0 +1,103 @@
import os
from PIL import Image
from modules import shared, images, devices, scripts, scripts_postprocessing, ui_common, generation_parameters_copypaste
from modules.shared import opts
def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir, show_extras_results, *args, save_output: bool = True):
devices.torch_gc()
shared.state.begin()
shared.state.job = 'extras'
image_data = []
image_names = []
outputs = []
if extras_mode == 1:
for img in image_folder:
image = Image.open(img)
image_data.append(image)
image_names.append(os.path.splitext(img.orig_name)[0])
elif extras_mode == 2:
assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled'
assert input_dir, 'input directory not selected'
image_list = shared.listfiles(input_dir)
for filename in image_list:
try:
image = Image.open(filename)
except Exception:
continue
image_data.append(image)
image_names.append(filename)
else:
assert image, 'image not selected'
image_data.append(image)
image_names.append(None)
if extras_mode == 2 and output_dir != '':
outpath = output_dir
else:
outpath = opts.outdir_samples or opts.outdir_extras_samples
infotext = ''
for image, name in zip(image_data, image_names):
shared.state.textinfo = name
existing_pnginfo = image.info or {}
pp = scripts_postprocessing.PostprocessedImage(image.convert("RGB"))
scripts.scripts_postproc.run(pp, args)
if opts.use_original_name_batch and name is not None:
basename = os.path.splitext(os.path.basename(name))[0]
else:
basename = ''
infotext = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in pp.info.items() if v is not None])
if opts.enable_pnginfo:
pp.image.info = existing_pnginfo
pp.image.info["postprocessing"] = infotext
if save_output:
images.save_image(pp.image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=infotext, short_filename=True, no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None)
if extras_mode != 2 or show_extras_results:
outputs.append(pp.image)
devices.torch_gc()
return outputs, ui_common.plaintext_to_html(infotext), ''
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
"""old handler for API"""
args = scripts.scripts_postproc.create_args_for_run({
"Upscale": {
"upscale_mode": resize_mode,
"upscale_by": upscaling_resize,
"upscale_to_width": upscaling_resize_w,
"upscale_to_height": upscaling_resize_h,
"upscale_crop": upscaling_crop,
"upscaler_1_name": extras_upscaler_1,
"upscaler_2_name": extras_upscaler_2,
"upscaler_2_visibility": extras_upscaler_2_visibility,
},
"GFPGAN": {
"gfpgan_visibility": gfpgan_visibility,
},
"CodeFormer": {
"codeformer_visibility": codeformer_visibility,
"codeformer_weight": codeformer_weight,
},
})
return run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir, show_extras_results, *args, save_output=save_output)

View File

@ -13,10 +13,11 @@ from skimage import exposure
from typing import Any, Dict, List, Optional
import modules.sd_hijack
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks, extra_networks
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, script_callbacks, extra_networks, sd_vae_approx, scripts
from modules.sd_hijack import model_hijack
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
import modules.paths as paths
import modules.face_restoration
import modules.images as images
import modules.styles
@ -184,7 +185,12 @@ class StableDiffusionProcessing:
conditioning = 2. * (conditioning - depth_min) / (depth_max - depth_min) - 1.
return conditioning
def inpainting_image_conditioning(self, source_image, latent_image, image_mask = None):
def edit_image_conditioning(self, source_image):
conditioning_image = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(source_image))
return conditioning_image
def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None):
self.is_using_inpainting_conditioning = True
# Handle the different mask inputs
@ -203,7 +209,7 @@ class StableDiffusionProcessing:
# Create another latent image, this time with a masked version of the original input.
# Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter.
conditioning_mask = conditioning_mask.to(source_image.device).to(source_image.dtype)
conditioning_mask = conditioning_mask.to(device=source_image.device, dtype=source_image.dtype)
conditioning_image = torch.lerp(
source_image,
source_image * (1.0 - conditioning_mask),
@ -222,11 +228,16 @@ class StableDiffusionProcessing:
return image_conditioning
def img2img_image_conditioning(self, source_image, latent_image, image_mask=None):
source_image = devices.cond_cast_float(source_image)
# HACK: Using introspection as the Depth2Image model doesn't appear to uniquely
# identify itself with a field common to all models. The conditioning_key is also hybrid.
if isinstance(self.sd_model, LatentDepth2ImageDiffusion):
return self.depth2img_image_conditioning(source_image)
if self.sd_model.cond_stage_key == "edit":
return self.edit_image_conditioning(source_image)
if self.sampler.conditioning_key in {'hybrid', 'concat'}:
return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask)
@ -439,14 +450,11 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Size": f"{p.width}x{p.height}",
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
"Batch size": (None if p.batch_size < 2 else p.batch_size),
"Batch pos": (None if p.batch_size < 2 else position_in_batch),
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
"Denoising strength": getattr(p, 'denoising_strength', None),
"Conditional mask weight": getattr(p, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) if p.is_using_inpainting_conditioning else None,
"Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
"Clip skip": None if clip_skip <= 1 else clip_skip,
"ENSD": None if opts.eta_noise_seed_delta == 0 else opts.eta_noise_seed_delta,
}
@ -568,10 +576,14 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
with devices.autocast():
p.init(p.all_prompts, p.all_seeds, p.all_subseeds)
# for OSX, loading the model during sampling changes the generated picture, so it is loaded here
if shared.opts.live_previews_enable and opts.show_progress_type == "Approx NN":
sd_vae_approx.model()
if not p.disable_extra_networks:
extra_networks.activate(p, extra_network_data)
with open(os.path.join(shared.script_path, "params.txt"), "w", encoding="utf8") as file:
with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file:
processed = Processed(p, [], p.seed, "")
file.write(processed.infotext(p, 0))
@ -610,7 +622,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if p.n_iter > 1:
shared.state.job = f"Batch {n+1} out of {p.n_iter}"
with devices.autocast():
with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
@ -645,6 +657,11 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
image = Image.fromarray(x_sample)
if p.scripts is not None:
pp = scripts.PostprocessImageArgs(image)
p.scripts.postprocess_image(p, pp)
image = pp.image
if p.color_corrections is not None and i < len(p.color_corrections):
if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)

View File

@ -46,7 +46,7 @@ class UpscalerRealESRGAN(Upscaler):
scale=info.scale,
model_path=info.local_data_path,
model=info.model(),
half=not cmd_opts.no_half,
half=not cmd_opts.no_half and not cmd_opts.upcast_sampling,
tile=opts.ESRGAN_tile,
tile_pad=opts.ESRGAN_tile_overlap,
)

View File

@ -1,16 +1,14 @@
import os
import sys
import traceback
import importlib.util
from types import ModuleType
def load_module(path):
with open(path, "r", encoding="utf8") as file:
text = file.read()
compiled = compile(text, path, 'exec')
module = ModuleType(os.path.basename(path))
exec(compiled, module.__dict__)
module_spec = importlib.util.spec_from_file_location(os.path.basename(path), path)
module = importlib.util.module_from_spec(module_spec)
module_spec.loader.exec_module(module)
return module

View File

@ -6,12 +6,16 @@ from collections import namedtuple
import gradio as gr
from modules.processing import StableDiffusionProcessing
from modules import shared, paths, script_callbacks, extensions, script_loading
from modules import shared, paths, script_callbacks, extensions, script_loading, scripts_postprocessing
AlwaysVisible = object()
class PostprocessImageArgs:
def __init__(self, image):
self.image = image
class Script:
filename = None
args_from = None
@ -65,7 +69,7 @@ class Script:
args contains all values returned by components from ui()
"""
raise NotImplementedError()
pass
def process(self, p, *args):
"""
@ -100,6 +104,13 @@ class Script:
pass
def postprocess_image(self, p, pp: PostprocessImageArgs, *args):
"""
Called for every image after it has been generated.
"""
pass
def postprocess(self, p, processed, *args):
"""
This function is called after processing ends for AlwaysVisible scripts.
@ -150,8 +161,10 @@ def basedir():
return current_basedir
scripts_data = []
ScriptFile = namedtuple("ScriptFile", ["basedir", "filename", "path"])
scripts_data = []
postprocessing_scripts_data = []
ScriptClassData = namedtuple("ScriptClassData", ["script_class", "path", "basedir", "module"])
@ -190,23 +203,31 @@ def list_files_with_name(filename):
def load_scripts():
global current_basedir
scripts_data.clear()
postprocessing_scripts_data.clear()
script_callbacks.clear_callbacks()
scripts_list = list_scripts("scripts", ".py")
syspath = sys.path
def register_scripts_from_module(module):
for key, script_class in module.__dict__.items():
if type(script_class) != type:
continue
if issubclass(script_class, Script):
scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir, module))
elif issubclass(script_class, scripts_postprocessing.ScriptPostprocessing):
postprocessing_scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir, module))
for scriptfile in sorted(scripts_list):
try:
if scriptfile.basedir != paths.script_path:
sys.path = [scriptfile.basedir] + sys.path
current_basedir = scriptfile.basedir
module = script_loading.load_module(scriptfile.path)
for key, script_class in module.__dict__.items():
if type(script_class) == type and issubclass(script_class, Script):
scripts_data.append(ScriptClassData(script_class, scriptfile.path, scriptfile.basedir, module))
script_module = script_loading.load_module(scriptfile.path)
register_scripts_from_module(script_module)
except Exception:
print(f"Error loading script: {scriptfile.filename}", file=sys.stderr)
@ -237,11 +258,15 @@ class ScriptRunner:
self.infotext_fields = []
def initialize_scripts(self, is_img2img):
from modules import scripts_auto_postprocessing
self.scripts.clear()
self.alwayson_scripts.clear()
self.selectable_scripts.clear()
for script_class, path, basedir, script_module in scripts_data:
auto_processing_scripts = scripts_auto_postprocessing.create_auto_preprocessing_script_data()
for script_class, path, basedir, script_module in auto_processing_scripts + scripts_data:
script = script_class()
script.filename = path
script.is_txt2img = not is_img2img
@ -320,9 +345,23 @@ class ScriptRunner:
outputs=[script.group for script in self.selectable_scripts]
)
self.script_load_ctr = 0
def onload_script_visibility(params):
title = params.get('Script', None)
if title:
title_index = self.titles.index(title)
visibility = title_index == self.script_load_ctr
self.script_load_ctr = (self.script_load_ctr + 1) % len(self.titles)
return gr.update(visible=visibility)
else:
return gr.update(visible=False)
self.infotext_fields.append( (dropdown, lambda x: gr.update(value=x.get('Script', 'None'))) )
self.infotext_fields.extend( [(script.group, onload_script_visibility) for script in self.selectable_scripts] )
return inputs
def run(self, p: StableDiffusionProcessing, *args):
def run(self, p, *args):
script_index = args[0]
if script_index == 0:
@ -376,6 +415,15 @@ class ScriptRunner:
print(f"Error running postprocess_batch: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
def postprocess_image(self, p, pp: PostprocessImageArgs):
for script in self.alwayson_scripts:
try:
script_args = p.script_args[script.args_from:script.args_to]
script.postprocess_image(p, pp, *script_args)
except Exception:
print(f"Error running postprocess_batch: {script.filename}", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
def before_component(self, component, **kwargs):
for script in self.scripts:
try:
@ -413,6 +461,7 @@ class ScriptRunner:
scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner()
scripts_postproc = scripts_postprocessing.ScriptPostprocessingRunner()
scripts_current: ScriptRunner = None
@ -423,12 +472,13 @@ def reload_script_body_only():
def reload_scripts():
global scripts_txt2img, scripts_img2img
global scripts_txt2img, scripts_img2img, scripts_postproc
load_scripts()
scripts_txt2img = ScriptRunner()
scripts_img2img = ScriptRunner()
scripts_postproc = scripts_postprocessing.ScriptPostprocessingRunner()
def IOComponent_init(self, *args, **kwargs):

View File

@ -0,0 +1,42 @@
from modules import scripts, scripts_postprocessing, shared
class ScriptPostprocessingForMainUI(scripts.Script):
def __init__(self, script_postproc):
self.script: scripts_postprocessing.ScriptPostprocessing = script_postproc
self.postprocessing_controls = None
def title(self):
return self.script.name
def show(self, is_img2img):
return scripts.AlwaysVisible
def ui(self, is_img2img):
self.postprocessing_controls = self.script.ui()
return self.postprocessing_controls.values()
def postprocess_image(self, p, script_pp, *args):
args_dict = {k: v for k, v in zip(self.postprocessing_controls, args)}
pp = scripts_postprocessing.PostprocessedImage(script_pp.image)
pp.info = {}
self.script.process(pp, **args_dict)
p.extra_generation_params.update(pp.info)
script_pp.image = pp.image
def create_auto_preprocessing_script_data():
from modules import scripts
res = []
for name in shared.opts.postprocessing_enable_in_main_ui:
script = next(iter([x for x in scripts.postprocessing_scripts_data if x.script_class.name == name]), None)
if script is None:
continue
constructor = lambda s=script: ScriptPostprocessingForMainUI(s.script_class())
res.append(scripts.ScriptClassData(script_class=constructor, path=script.path, basedir=script.basedir, module=script.module))
return res

View File

@ -0,0 +1,152 @@
import os
import gradio as gr
from modules import errors, shared
class PostprocessedImage:
def __init__(self, image):
self.image = image
self.info = {}
class ScriptPostprocessing:
filename = None
controls = None
args_from = None
args_to = None
order = 1000
"""scripts will be ordred by this value in postprocessing UI"""
name = None
"""this function should return the title of the script."""
group = None
"""A gr.Group component that has all script's UI inside it"""
def ui(self):
"""
This function should create gradio UI elements. See https://gradio.app/docs/#components
The return value should be a dictionary that maps parameter names to components used in processing.
Values of those components will be passed to process() function.
"""
pass
def process(self, pp: PostprocessedImage, **args):
"""
This function is called to postprocess the image.
args contains a dictionary with all values returned by components from ui()
"""
pass
def image_changed(self):
pass
def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
try:
res = func(*args, **kwargs)
return res
except Exception as e:
errors.display(e, f"calling {filename}/{funcname}")
return default
class ScriptPostprocessingRunner:
def __init__(self):
self.scripts = None
self.ui_created = False
def initialize_scripts(self, scripts_data):
self.scripts = []
for script_class, path, basedir, script_module in scripts_data:
script: ScriptPostprocessing = script_class()
script.filename = path
if script.name == "Simple Upscale":
continue
self.scripts.append(script)
def create_script_ui(self, script, inputs):
script.args_from = len(inputs)
script.args_to = len(inputs)
script.controls = wrap_call(script.ui, script.filename, "ui")
for control in script.controls.values():
control.custom_script_source = os.path.basename(script.filename)
inputs += list(script.controls.values())
script.args_to = len(inputs)
def scripts_in_preferred_order(self):
if self.scripts is None:
import modules.scripts
self.initialize_scripts(modules.scripts.postprocessing_scripts_data)
scripts_order = shared.opts.postprocessing_operation_order
def script_score(name):
for i, possible_match in enumerate(scripts_order):
if possible_match == name:
return i
return len(self.scripts)
script_scores = {script.name: (script_score(script.name), script.order, script.name, original_index) for original_index, script in enumerate(self.scripts)}
return sorted(self.scripts, key=lambda x: script_scores[x.name])
def setup_ui(self):
inputs = []
for script in self.scripts_in_preferred_order():
with gr.Box() as group:
self.create_script_ui(script, inputs)
script.group = group
self.ui_created = True
return inputs
def run(self, pp: PostprocessedImage, args):
for script in self.scripts_in_preferred_order():
shared.state.job = script.name
script_args = args[script.args_from:script.args_to]
process_args = {}
for (name, component), value in zip(script.controls.items(), script_args):
process_args[name] = value
script.process(pp, **process_args)
def create_args_for_run(self, scripts_args):
if not self.ui_created:
with gr.Blocks(analytics_enabled=False):
self.setup_ui()
scripts = self.scripts_in_preferred_order()
args = [None] * max([x.args_to for x in scripts])
for script in scripts:
script_args_dict = scripts_args.get(script.name, None)
if script_args_dict is not None:
for i, name in enumerate(script.controls):
args[script.args_from + i] = script_args_dict.get(name, None)
return args
def image_changed(self):
for script in self.scripts_in_preferred_order():
script.image_changed()

View File

@ -131,6 +131,8 @@ class StableDiffusionModelHijack:
m.cond_stage_model.wrapped.model.token_embedding = m.cond_stage_model.wrapped.model.token_embedding.wrapped
m.cond_stage_model = m.cond_stage_model.wrapped
undo_optimizations()
self.apply_circular(False)
self.layers = None
self.clip = None
@ -171,7 +173,7 @@ class EmbeddingsWithFixes(torch.nn.Module):
vecs = []
for fixes, tensor in zip(batch_fixes, inputs_embeds):
for offset, embedding in fixes:
emb = embedding.vec
emb = devices.cond_cast_unet(embedding.vec)
emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]])

View File

@ -96,15 +96,6 @@ def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=F
return x_prev, pred_x0, e_t
def should_hijack_inpainting(checkpoint_info):
from modules import sd_models
ckpt_basename = os.path.basename(checkpoint_info.filename).lower()
cfg_basename = os.path.basename(sd_models.find_checkpoint_config(checkpoint_info)).lower()
return "inpainting" in ckpt_basename and not "inpainting" in cfg_basename
def do_inpainting_hijack():
# p_sample_plms is needed because PLMS can't work with dicts as conditionings

13
modules/sd_hijack_ip2p.py Normal file
View File

@ -0,0 +1,13 @@
import collections
import os.path
import sys
import gc
import time
def should_hijack_ip2p(checkpoint_info):
from modules import sd_models_config
ckpt_basename = os.path.basename(checkpoint_info.filename).lower()
cfg_basename = os.path.basename(sd_models_config.find_checkpoint_config_near_filename(checkpoint_info)).lower()
return "pix2pix" in ckpt_basename and not "pix2pix" in cfg_basename

View File

@ -9,7 +9,7 @@ from torch import einsum
from ldm.util import default
from einops import rearrange
from modules import shared
from modules import shared, errors, devices
from modules.hypernetworks import hypernetwork
from .sub_quadratic_attention import efficient_dot_product_attention
@ -52,18 +52,25 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None):
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device)
for i in range(0, q.shape[0], 2):
end = i + 2
s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end])
s1 *= self.scale
dtype = q.dtype
if shared.opts.upcast_attn:
q, k, v = q.float(), k.float(), v.float()
s2 = s1.softmax(dim=-1)
del s1
with devices.without_autocast(disable=not shared.opts.upcast_attn):
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
for i in range(0, q.shape[0], 2):
end = i + 2
s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end])
s1 *= self.scale
s2 = s1.softmax(dim=-1)
del s1
r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end])
del s2
del q, k, v
r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end])
del s2
del q, k, v
r1 = r1.to(dtype)
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
del r1
@ -82,45 +89,52 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
k_in = self.to_k(context_k)
v_in = self.to_v(context_v)
k_in *= self.scale
dtype = q_in.dtype
if shared.opts.upcast_attn:
q_in, k_in, v_in = q_in.float(), k_in.float(), v_in if v_in.device.type == 'mps' else v_in.float()
del context, x
with devices.without_autocast(disable=not shared.opts.upcast_attn):
k_in = k_in * self.scale
del context, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
mem_free_total = get_available_vram()
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
modifier = 3 if q.element_size() == 2 else 2.5
mem_required = tensor_size * modifier
steps = 1
if mem_required > mem_free_total:
steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
if steps > 64:
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
s2 = s1.softmax(dim=-1, dtype=q.dtype)
del s1
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
del s2
del q, k, v
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype)
mem_free_total = get_available_vram()
gb = 1024 ** 3
tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size()
modifier = 3 if q.element_size() == 2 else 2.5
mem_required = tensor_size * modifier
steps = 1
if mem_required > mem_free_total:
steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2)))
# print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB "
# f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}")
if steps > 64:
max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
for i in range(0, q.shape[1], slice_size):
end = i + slice_size
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
s2 = s1.softmax(dim=-1, dtype=q.dtype)
del s1
r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v)
del s2
del q, k, v
r1 = r1.to(dtype)
r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h)
del r1
@ -204,12 +218,20 @@ def split_cross_attention_forward_invokeAI(self, x, context=None, mask=None):
context = default(context, x)
context_k, context_v = hypernetwork.apply_hypernetworks(shared.loaded_hypernetworks, context)
k = self.to_k(context_k) * self.scale
k = self.to_k(context_k)
v = self.to_v(context_v)
del context, context_k, context_v, x
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
r = einsum_op(q, k, v)
dtype = q.dtype
if shared.opts.upcast_attn:
q, k, v = q.float(), k.float(), v if v.device.type == 'mps' else v.float()
with devices.without_autocast(disable=not shared.opts.upcast_attn):
k = k * self.scale
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
r = einsum_op(q, k, v)
r = r.to(dtype)
return self.to_out(rearrange(r, '(b h) n d -> b n (h d)', h=h))
# -- End of code from https://github.com/invoke-ai/InvokeAI --
@ -234,8 +256,14 @@ def sub_quad_attention_forward(self, x, context=None, mask=None):
k = k.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
v = v.unflatten(-1, (h, -1)).transpose(1,2).flatten(end_dim=1)
dtype = q.dtype
if shared.opts.upcast_attn:
q, k = q.float(), k.float()
x = sub_quad_attention(q, k, v, q_chunk_size=shared.cmd_opts.sub_quad_q_chunk_size, kv_chunk_size=shared.cmd_opts.sub_quad_kv_chunk_size, chunk_threshold=shared.cmd_opts.sub_quad_chunk_threshold, use_checkpoint=self.training)
x = x.to(dtype)
x = x.unflatten(0, (-1, h)).transpose(1,2).flatten(start_dim=2)
out_proj, dropout = self.to_out
@ -268,15 +296,31 @@ def sub_quad_attention(q, k, v, q_chunk_size=1024, kv_chunk_size=None, kv_chunk_
query_chunk_size = q_tokens
kv_chunk_size = k_tokens
return efficient_dot_product_attention(
q,
k,
v,
query_chunk_size=q_chunk_size,
kv_chunk_size=kv_chunk_size,
kv_chunk_size_min = kv_chunk_size_min,
use_checkpoint=use_checkpoint,
)
with devices.without_autocast(disable=q.dtype == v.dtype):
return efficient_dot_product_attention(
q,
k,
v,
query_chunk_size=q_chunk_size,
kv_chunk_size=kv_chunk_size,
kv_chunk_size_min = kv_chunk_size_min,
use_checkpoint=use_checkpoint,
)
def get_xformers_flash_attention_op(q, k, v):
if not shared.cmd_opts.xformers_flash_attention:
return None
try:
flash_attention_op = xformers.ops.MemoryEfficientAttentionFlashAttentionOp
fw, bw = flash_attention_op
if fw.supports(xformers.ops.fmha.Inputs(query=q, key=k, value=v, attn_bias=None)):
return flash_attention_op
except Exception as e:
errors.display_once(e, "enabling flash attention")
return None
def xformers_attention_forward(self, x, context=None, mask=None):
@ -290,7 +334,14 @@ def xformers_attention_forward(self, x, context=None, mask=None):
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b n h d', h=h), (q_in, k_in, v_in))
del q_in, k_in, v_in
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)
dtype = q.dtype
if shared.opts.upcast_attn:
q, k = q.float(), k.float()
out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None, op=get_xformers_flash_attention_op(q, k, v))
out = out.to(dtype)
out = rearrange(out, 'b n h d -> b n (h d)', h=h)
return self.to_out(out)
@ -362,10 +413,14 @@ def xformers_attnblock_forward(self, x):
v = self.v(h_)
b, c, h, w = q.shape
q, k, v = map(lambda t: rearrange(t, 'b c h w -> b (h w) c'), (q, k, v))
dtype = q.dtype
if shared.opts.upcast_attn:
q, k = q.float(), k.float()
q = q.contiguous()
k = k.contiguous()
v = v.contiguous()
out = xformers.ops.memory_efficient_attention(q, k, v)
out = xformers.ops.memory_efficient_attention(q, k, v, op=get_xformers_flash_attention_op(q, k, v))
out = out.to(dtype)
out = rearrange(out, 'b (h w) c -> b c h w', h=h)
out = self.proj_out(out)
return x + out

View File

@ -1,4 +1,8 @@
import torch
from packaging import version
from modules import devices
from modules.sd_hijack_utils import CondFunc
class TorchHijackForUnet:
@ -28,3 +32,37 @@ class TorchHijackForUnet:
th = TorchHijackForUnet()
# Below are monkey patches to enable upcasting a float16 UNet for float32 sampling
def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
if isinstance(cond, dict):
for y in cond.keys():
cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]]
with devices.autocast():
return orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs).float()
class GELUHijack(torch.nn.GELU, torch.nn.Module):
def __init__(self, *args, **kwargs):
torch.nn.GELU.__init__(self, *args, **kwargs)
def forward(self, x):
if devices.unet_needs_upcast:
return torch.nn.GELU.forward(self.float(), x.float()).to(devices.dtype_unet)
else:
return torch.nn.GELU.forward(self, x)
unet_needs_upcast = lambda *args, **kwargs: devices.unet_needs_upcast
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.apply_model', apply_model, unet_needs_upcast)
CondFunc('ldm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
if version.parse(torch.__version__) <= version.parse("1.13.1"):
CondFunc('ldm.modules.diffusionmodules.util.GroupNorm32.forward', lambda orig_func, self, *args, **kwargs: orig_func(self.float(), *args, **kwargs), unet_needs_upcast)
CondFunc('ldm.modules.attention.GEGLU.forward', lambda orig_func, self, x: orig_func(self.float(), x.float()).to(devices.dtype_unet), unet_needs_upcast)
CondFunc('open_clip.transformer.ResidualAttentionBlock.__init__', lambda orig_func, *args, **kwargs: kwargs.update({'act_layer': GELUHijack}) and False or orig_func(*args, **kwargs), lambda _, *args, **kwargs: kwargs.get('act_layer') is None or kwargs['act_layer'] == torch.nn.GELU)
first_stage_cond = lambda _, self, *args, **kwargs: devices.unet_needs_upcast and self.model.diffusion_model.dtype == torch.float16
first_stage_sub = lambda orig_func, self, x, **kwargs: orig_func(self, x.to(devices.dtype_vae), **kwargs)
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond)

View File

@ -0,0 +1,28 @@
import importlib
class CondFunc:
def __new__(cls, orig_func, sub_func, cond_func):
self = super(CondFunc, cls).__new__(cls)
if isinstance(orig_func, str):
func_path = orig_func.split('.')
for i in range(len(func_path)-1, -1, -1):
try:
resolved_obj = importlib.import_module('.'.join(func_path[:i]))
break
except ImportError:
pass
for attr_name in func_path[i:-1]:
resolved_obj = getattr(resolved_obj, attr_name)
orig_func = getattr(resolved_obj, func_path[-1])
setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs))
self.__init__(orig_func, sub_func, cond_func)
return lambda *args, **kwargs: self(*args, **kwargs)
def __init__(self, orig_func, sub_func, cond_func):
self.__orig_func = orig_func
self.__sub_func = sub_func
self.__cond_func = cond_func
def __call__(self, *args, **kwargs):
if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs):
return self.__sub_func(self.__orig_func, *args, **kwargs)
else:
return self.__orig_func(*args, **kwargs)

View File

@ -2,8 +2,6 @@ import collections
import os.path
import sys
import gc
import time
from collections import namedtuple
import torch
import re
import safetensors.torch
@ -14,12 +12,13 @@ import ldm.modules.midas as midas
from ldm.util import instantiate_from_config
from modules import shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes
from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config
from modules.paths import models_path
from modules.sd_hijack_inpainting import do_inpainting_hijack, should_hijack_inpainting
from modules.sd_hijack_inpainting import do_inpainting_hijack
from modules.timer import Timer
model_dir = "Stable-diffusion"
model_path = os.path.abspath(os.path.join(models_path, model_dir))
model_path = os.path.abspath(os.path.join(paths.models_path, model_dir))
checkpoints_list = {}
checkpoint_alisases = {}
@ -42,6 +41,7 @@ class CheckpointInfo:
name = name[1:]
self.name = name
self.name_for_extra = os.path.splitext(os.path.basename(filename))[0]
self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
self.hash = model_hash(filename)
@ -98,17 +98,6 @@ def checkpoint_tiles():
return sorted([x.title for x in checkpoints_list.values()], key=alphanumeric_key)
def find_checkpoint_config(info):
if info is None:
return shared.cmd_opts.config
config = os.path.splitext(info.filename)[0] + ".yaml"
if os.path.exists(config):
return config
return shared.cmd_opts.config
def list_models():
checkpoints_list.clear()
checkpoint_alisases.clear()
@ -214,9 +203,7 @@ def get_state_dict_from_checkpoint(pl_sd):
def read_state_dict(checkpoint_file, print_global_state=False, map_location=None):
_, extension = os.path.splitext(checkpoint_file)
if extension.lower() == ".safetensors":
device = map_location or shared.weight_load_location
if device is None:
device = devices.get_cuda_device_string() if torch.cuda.is_available() else "cpu"
device = map_location or shared.weight_load_location or devices.get_optimal_device_name()
pl_sd = safetensors.torch.load_file(checkpoint_file, device=device)
else:
pl_sd = torch.load(checkpoint_file, map_location=map_location or shared.weight_load_location)
@ -228,52 +215,72 @@ def read_state_dict(checkpoint_file, print_global_state=False, map_location=None
return sd
def load_model_weights(model, checkpoint_info: CheckpointInfo):
title = checkpoint_info.title
def get_checkpoint_state_dict(checkpoint_info: CheckpointInfo, timer):
sd_model_hash = checkpoint_info.calculate_shorthash()
if checkpoint_info.title != title:
shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title
timer.record("calculate hash")
cache_enabled = shared.opts.sd_checkpoint_cache > 0
if cache_enabled and checkpoint_info in checkpoints_loaded:
if checkpoint_info in checkpoints_loaded:
# use checkpoint cache
print(f"Loading weights [{sd_model_hash}] from cache")
model.load_state_dict(checkpoints_loaded[checkpoint_info])
else:
# load from file
print(f"Loading weights [{sd_model_hash}] from {checkpoint_info.filename}")
return checkpoints_loaded[checkpoint_info]
sd = read_state_dict(checkpoint_info.filename)
model.load_state_dict(sd, strict=False)
del sd
if cache_enabled:
# cache newly loaded model
checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
print(f"Loading weights [{sd_model_hash}] from {checkpoint_info.filename}")
res = read_state_dict(checkpoint_info.filename)
timer.record("load weights from disk")
if shared.cmd_opts.opt_channelslast:
model.to(memory_format=torch.channels_last)
return res
if not shared.cmd_opts.no_half:
vae = model.first_stage_model
# with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16
if shared.cmd_opts.no_half_vae:
model.first_stage_model = None
def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer):
sd_model_hash = checkpoint_info.calculate_shorthash()
timer.record("calculate hash")
model.half()
model.first_stage_model = vae
shared.opts.data["sd_model_checkpoint"] = checkpoint_info.title
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
if state_dict is None:
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
model.first_stage_model.to(devices.dtype_vae)
model.load_state_dict(state_dict, strict=False)
del state_dict
timer.record("apply weights to model")
if shared.opts.sd_checkpoint_cache > 0:
# cache newly loaded model
checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
if shared.cmd_opts.opt_channelslast:
model.to(memory_format=torch.channels_last)
timer.record("apply channels_last")
if not shared.cmd_opts.no_half:
vae = model.first_stage_model
depth_model = getattr(model, 'depth_model', None)
# with --no-half-vae, remove VAE from model when doing half() to prevent its weights from being converted to float16
if shared.cmd_opts.no_half_vae:
model.first_stage_model = None
# with --upcast-sampling, don't convert the depth model weights to float16
if shared.cmd_opts.upcast_sampling and depth_model:
model.depth_model = None
model.half()
model.first_stage_model = vae
if depth_model:
model.depth_model = depth_model
timer.record("apply half()")
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
devices.dtype_unet = model.model.diffusion_model.dtype
devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16
model.first_stage_model.to(devices.dtype_vae)
timer.record("apply dtype to VAE")
# clean up cache if limit is reached
if cache_enabled:
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache + 1: # we need to count the current model
checkpoints_loaded.popitem(last=False) # LRU
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
checkpoints_loaded.popitem(last=False)
model.sd_model_hash = sd_model_hash
model.sd_model_checkpoint = checkpoint_info.filename
@ -286,6 +293,7 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo):
sd_vae.clear_loaded_vae()
vae_file, vae_source = sd_vae.resolve_vae(checkpoint_info.filename)
sd_vae.load_vae(model, vae_file, vae_source)
timer.record("load VAE")
def enable_midas_autodownload():
@ -298,7 +306,7 @@ def enable_midas_autodownload():
location automatically.
"""
midas_path = os.path.join(models_path, 'midas')
midas_path = os.path.join(paths.models_path, 'midas')
# stable-diffusion-stability-ai hard-codes the midas model path to
# a location that differs from where other scripts using this model look.
@ -331,24 +339,20 @@ def enable_midas_autodownload():
midas.api.load_model = load_model_wrapper
class Timer:
def __init__(self):
self.start = time.time()
def repair_config(sd_config):
def elapsed(self):
end = time.time()
res = end - self.start
self.start = end
return res
if not hasattr(sd_config.model.params, "use_ema"):
sd_config.model.params.use_ema = False
if shared.cmd_opts.no_half:
sd_config.model.params.unet_config.params.use_fp16 = False
elif shared.cmd_opts.upcast_sampling:
sd_config.model.params.unet_config.params.use_fp16 = True
def load_model(checkpoint_info=None):
def load_model(checkpoint_info=None, already_loaded_state_dict=None, time_taken_to_load_state_dict=None):
from modules import lowvram, sd_hijack
checkpoint_info = checkpoint_info or select_checkpoint()
checkpoint_config = find_checkpoint_config(checkpoint_info)
if checkpoint_config != shared.cmd_opts.config:
print(f"Loading config from: {checkpoint_config}")
if shared.sd_model:
sd_hijack.model_hijack.undo_hijack(shared.sd_model)
@ -356,27 +360,27 @@ def load_model(checkpoint_info=None):
gc.collect()
devices.torch_gc()
sd_config = OmegaConf.load(checkpoint_config)
if should_hijack_inpainting(checkpoint_info):
# Hardcoded config for now...
sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
sd_config.model.params.conditioning_key = "hybrid"
sd_config.model.params.unet_config.params.in_channels = 9
sd_config.model.params.finetune_keys = None
if not hasattr(sd_config.model.params, "use_ema"):
sd_config.model.params.use_ema = False
do_inpainting_hijack()
if shared.cmd_opts.no_half:
sd_config.model.params.unet_config.params.use_fp16 = False
timer = Timer()
sd_model = None
if already_loaded_state_dict is not None:
state_dict = already_loaded_state_dict
else:
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
timer.record("find config")
sd_config = OmegaConf.load(checkpoint_config)
repair_config(sd_config)
timer.record("load config")
print(f"Creating model from config: {checkpoint_config}")
sd_model = None
try:
with sd_disable_initialization.DisableInitialization():
sd_model = instantiate_from_config(sd_config.model)
@ -387,29 +391,35 @@ def load_model(checkpoint_info=None):
print('Failed to create model quickly; will retry using slow method.', file=sys.stderr)
sd_model = instantiate_from_config(sd_config.model)
elapsed_create = timer.elapsed()
sd_model.used_config = checkpoint_config
load_model_weights(sd_model, checkpoint_info)
timer.record("create model")
elapsed_load_weights = timer.elapsed()
load_model_weights(sd_model, checkpoint_info, state_dict, timer)
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
else:
sd_model.to(shared.device)
timer.record("move model to device")
sd_hijack.model_hijack.hijack(sd_model)
timer.record("hijack")
sd_model.eval()
shared.sd_model = sd_model
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True) # Reload embeddings after model load as they may or may not fit the model
timer.record("load textual inversion embeddings")
script_callbacks.model_loaded_callback(sd_model)
elapsed_the_rest = timer.elapsed()
timer.record("scripts callbacks")
print(f"Model loaded in {elapsed_create + elapsed_load_weights + elapsed_the_rest:.1f}s ({elapsed_create:.1f}s create model, {elapsed_load_weights:.1f}s load weights).")
print(f"Model loaded in {timer.summary()}.")
return sd_model
@ -420,6 +430,7 @@ def reload_model_weights(sd_model=None, info=None):
if not sd_model:
sd_model = shared.sd_model
if sd_model is None: # previous model load failed
current_checkpoint_info = None
else:
@ -427,38 +438,44 @@ def reload_model_weights(sd_model=None, info=None):
if sd_model.sd_model_checkpoint == checkpoint_info.filename:
return
checkpoint_config = find_checkpoint_config(current_checkpoint_info)
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu()
else:
sd_model.to(devices.cpu)
if current_checkpoint_info is None or checkpoint_config != find_checkpoint_config(checkpoint_info) or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
del sd_model
checkpoints_loaded.clear()
load_model(checkpoint_info)
return shared.sd_model
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
lowvram.send_everything_to_cpu()
else:
sd_model.to(devices.cpu)
sd_hijack.model_hijack.undo_hijack(sd_model)
sd_hijack.model_hijack.undo_hijack(sd_model)
timer = Timer()
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
checkpoint_config = sd_models_config.find_checkpoint_config(state_dict, checkpoint_info)
timer.record("find config")
if sd_model is None or checkpoint_config != sd_model.used_config:
del sd_model
checkpoints_loaded.clear()
load_model(checkpoint_info, already_loaded_state_dict=state_dict, time_taken_to_load_state_dict=timer.records["load weights from disk"])
return shared.sd_model
try:
load_model_weights(sd_model, checkpoint_info)
load_model_weights(sd_model, checkpoint_info, state_dict, timer)
except Exception as e:
print("Failed to load checkpoint, restoring previous")
load_model_weights(sd_model, current_checkpoint_info)
load_model_weights(sd_model, current_checkpoint_info, None, timer)
raise
finally:
sd_hijack.model_hijack.hijack(sd_model)
timer.record("hijack")
script_callbacks.model_loaded_callback(sd_model)
timer.record("script callbacks")
if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram:
sd_model.to(devices.device)
timer.record("move model to device")
elapsed = timer.elapsed()
print(f"Weights loaded in {elapsed:.1f}s.")
print(f"Weights loaded in {timer.summary()}.")
return sd_model

112
modules/sd_models_config.py Normal file
View File

@ -0,0 +1,112 @@
import re
import os
import torch
from modules import shared, paths, sd_disable_initialization
sd_configs_path = shared.sd_configs_path
sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion")
config_default = shared.sd_default_config
config_sd2 = os.path.join(sd_repo_configs_path, "v2-inference.yaml")
config_sd2v = os.path.join(sd_repo_configs_path, "v2-inference-v.yaml")
config_sd2_inpainting = os.path.join(sd_repo_configs_path, "v2-inpainting-inference.yaml")
config_depth_model = os.path.join(sd_repo_configs_path, "v2-midas-inference.yaml")
config_inpainting = os.path.join(sd_configs_path, "v1-inpainting-inference.yaml")
config_instruct_pix2pix = os.path.join(sd_configs_path, "instruct-pix2pix.yaml")
config_alt_diffusion = os.path.join(sd_configs_path, "alt-diffusion-inference.yaml")
def is_using_v_parameterization_for_sd2(state_dict):
"""
Detects whether unet in state_dict is using v-parameterization. Returns True if it is. You're welcome.
"""
import ldm.modules.diffusionmodules.openaimodel
from modules import devices
device = devices.cpu
with sd_disable_initialization.DisableInitialization():
unet = ldm.modules.diffusionmodules.openaimodel.UNetModel(
use_checkpoint=True,
use_fp16=False,
image_size=32,
in_channels=4,
out_channels=4,
model_channels=320,
attention_resolutions=[4, 2, 1],
num_res_blocks=2,
channel_mult=[1, 2, 4, 4],
num_head_channels=64,
use_spatial_transformer=True,
use_linear_in_transformer=True,
transformer_depth=1,
context_dim=1024,
legacy=False
)
unet.eval()
with torch.no_grad():
unet_sd = {k.replace("model.diffusion_model.", ""): v for k, v in state_dict.items() if "model.diffusion_model." in k}
unet.load_state_dict(unet_sd, strict=True)
unet.to(device=device, dtype=torch.float)
test_cond = torch.ones((1, 2, 1024), device=device) * 0.5
x_test = torch.ones((1, 4, 8, 8), device=device) * 0.5
out = (unet(x_test, torch.asarray([999], device=device), context=test_cond) - x_test).mean().item()
return out < -1
def guess_model_config_from_state_dict(sd, filename):
sd2_cond_proj_weight = sd.get('cond_stage_model.model.transformer.resblocks.0.attn.in_proj_weight', None)
diffusion_model_input = sd.get('model.diffusion_model.input_blocks.0.0.weight', None)
if sd.get('depth_model.model.pretrained.act_postprocess3.0.project.0.bias', None) is not None:
return config_depth_model
if sd2_cond_proj_weight is not None and sd2_cond_proj_weight.shape[1] == 1024:
if diffusion_model_input.shape[1] == 9:
return config_sd2_inpainting
elif is_using_v_parameterization_for_sd2(sd):
return config_sd2v
else:
return config_sd2
if diffusion_model_input is not None:
if diffusion_model_input.shape[1] == 9:
return config_inpainting
if diffusion_model_input.shape[1] == 8:
return config_instruct_pix2pix
if sd.get('cond_stage_model.roberta.embeddings.word_embeddings.weight', None) is not None:
return config_alt_diffusion
return config_default
def find_checkpoint_config(state_dict, info):
if info is None:
return guess_model_config_from_state_dict(state_dict, "")
config = find_checkpoint_config_near_filename(info)
if config is not None:
return config
return guess_model_config_from_state_dict(state_dict, info.filename)
def find_checkpoint_config_near_filename(info):
if info is None:
return None
config = os.path.splitext(info.filename)[0] + ".yaml"
if os.path.exists(config):
return config
return None

View File

@ -1,53 +1,11 @@
from collections import namedtuple, deque
import numpy as np
from math import floor
import torch
import tqdm
from PIL import Image
import inspect
import k_diffusion.sampling
import torchsde._brownian.brownian_interval
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
from modules import prompt_parser, devices, processing, images, sd_vae_approx
from modules import sd_samplers_compvis, sd_samplers_kdiffusion, shared
from modules.shared import opts, cmd_opts, state
import modules.shared as shared
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
samplers_k_diffusion = [
('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}),
('Euler', 'sample_euler', ['k_euler'], {}),
('LMS', 'sample_lms', ['k_lms'], {}),
('Heun', 'sample_heun', ['k_heun'], {}),
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}),
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True}),
('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {}),
('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {}),
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}),
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}),
]
samplers_data_k_diffusion = [
SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
for label, funcname, aliases, options in samplers_k_diffusion
if hasattr(k_diffusion.sampling, funcname)
]
# imports for functions that previously were here and are used by other modules
from modules.sd_samplers_common import samples_to_image_grid, sample_to_image
all_samplers = [
*samplers_data_k_diffusion,
SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
*sd_samplers_kdiffusion.samplers_data_k_diffusion,
*sd_samplers_compvis.samplers_data_compvis,
]
all_samplers_map = {x.name: x for x in all_samplers}
@ -73,8 +31,8 @@ def create_sampler(name, model):
def set_samplers():
global samplers, samplers_for_img2img
hidden = set(opts.hide_samplers)
hidden_img2img = set(opts.hide_samplers + ['PLMS'])
hidden = set(shared.opts.hide_samplers)
hidden_img2img = set(shared.opts.hide_samplers + ['PLMS'])
samplers = [x for x in all_samplers if x.name not in hidden]
samplers_for_img2img = [x for x in all_samplers if x.name not in hidden_img2img]
@ -87,466 +45,3 @@ def set_samplers():
set_samplers()
sampler_extra_params = {
'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
}
def setup_img2img_steps(p, steps=None):
if opts.img2img_fix_steps or steps is not None:
requested_steps = (steps or p.steps)
steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
t_enc = requested_steps - 1
else:
steps = p.steps
t_enc = int(min(p.denoising_strength, 0.999) * steps)
return steps, t_enc
approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2}
def single_sample_to_image(sample, approximation=None):
if approximation is None:
approximation = approximation_indexes.get(opts.show_progress_type, 0)
if approximation == 2:
x_sample = sd_vae_approx.cheap_approximation(sample)
elif approximation == 1:
x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
else:
x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
return Image.fromarray(x_sample)
def sample_to_image(samples, index=0, approximation=None):
return single_sample_to_image(samples[index], approximation)
def samples_to_image_grid(samples, approximation=None):
return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples])
def store_latent(decoded):
state.current_latent = decoded
if opts.live_previews_enable and opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0:
if not shared.parallel_processing_allowed:
shared.state.assign_current_image(sample_to_image(decoded))
class InterruptedException(BaseException):
pass
class VanillaStableDiffusionSampler:
def __init__(self, constructor, sd_model):
self.sampler = constructor(sd_model)
self.is_plms = hasattr(self.sampler, 'p_sample_plms')
self.orig_p_sample_ddim = self.sampler.p_sample_plms if self.is_plms else self.sampler.p_sample_ddim
self.mask = None
self.nmask = None
self.init_latent = None
self.sampler_noises = None
self.step = 0
self.stop_at = None
self.eta = None
self.default_eta = 0.0
self.config = None
self.last_latent = None
self.conditioning_key = sd_model.model.conditioning_key
def number_of_needed_noises(self, p):
return 0
def launch_sampling(self, steps, func):
state.sampling_steps = steps
state.sampling_step = 0
try:
return func()
except InterruptedException:
return self.last_latent
def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
if state.interrupted or state.skipped:
raise InterruptedException
if self.stop_at is not None and self.step > self.stop_at:
raise InterruptedException
# Have to unwrap the inpainting conditioning here to perform pre-processing
image_conditioning = None
if isinstance(cond, dict):
image_conditioning = cond["c_concat"][0]
cond = cond["c_crossattn"][0]
unconditional_conditioning = unconditional_conditioning["c_crossattn"][0]
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers'
cond = tensor
# for DDIM, shapes must match, we can't just process cond and uncond independently;
# filling unconditional_conditioning with repeats of the last vector to match length is
# not 100% correct but should work well enough
if unconditional_conditioning.shape[1] < cond.shape[1]:
last_vector = unconditional_conditioning[:, -1:]
last_vector_repeated = last_vector.repeat([1, cond.shape[1] - unconditional_conditioning.shape[1], 1])
unconditional_conditioning = torch.hstack([unconditional_conditioning, last_vector_repeated])
elif unconditional_conditioning.shape[1] > cond.shape[1]:
unconditional_conditioning = unconditional_conditioning[:, :cond.shape[1]]
if self.mask is not None:
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
x_dec = img_orig * self.mask + self.nmask * x_dec
# Wrap the image conditioning back up since the DDIM code can accept the dict directly.
# Note that they need to be lists because it just concatenates them later.
if image_conditioning is not None:
cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
if self.mask is not None:
self.last_latent = self.init_latent * self.mask + self.nmask * res[1]
else:
self.last_latent = res[1]
store_latent(self.last_latent)
self.step += 1
state.sampling_step = self.step
shared.total_tqdm.update()
return res
def initialize(self, p):
self.eta = p.eta if p.eta is not None else opts.eta_ddim
for fieldname in ['p_sample_ddim', 'p_sample_plms']:
if hasattr(self.sampler, fieldname):
setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
self.mask = p.mask if hasattr(p, 'mask') else None
self.nmask = p.nmask if hasattr(p, 'nmask') else None
def adjust_steps_if_invalid(self, p, num_steps):
if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'):
valid_step = 999 / (1000 // num_steps)
if valid_step == floor(valid_step):
return int(valid_step) + 1
return num_steps
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = setup_img2img_steps(p, steps)
steps = self.adjust_steps_if_invalid(p, steps)
self.initialize(p)
self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False)
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
self.init_latent = x
self.last_latent = x
self.step = 0
# Wrap the conditioning models with additional image conditioning for inpainting model
if image_conditioning is not None:
conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
return samples
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
self.initialize(p)
self.init_latent = None
self.last_latent = x
self.step = 0
steps = self.adjust_steps_if_invalid(p, steps or p.steps)
# Wrap the conditioning models with additional image conditioning for inpainting model
# dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape
if image_conditioning is not None:
conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]}
unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]}
samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])
return samples_ddim
class CFGDenoiser(torch.nn.Module):
def __init__(self, model):
super().__init__()
self.inner_model = model
self.mask = None
self.nmask = None
self.init_latent = None
self.step = 0
def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
denoised_uncond = x_out[-uncond.shape[0]:]
denoised = torch.clone(denoised_uncond)
for i, conds in enumerate(conds_list):
for cond_index, weight in conds:
denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
return denoised
def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):
if state.interrupted or state.skipped:
raise InterruptedException
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
batch_size = len(conds_list)
repeats = [len(conds_list[i]) for i in range(batch_size)]
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond])
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps)
cfg_denoiser_callback(denoiser_params)
x_in = denoiser_params.x
image_cond_in = denoiser_params.image_cond
sigma_in = denoiser_params.sigma
if tensor.shape[1] == uncond.shape[1]:
cond_in = torch.cat([tensor, uncond])
if shared.batch_cond_uncond:
x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]})
else:
x_out = torch.zeros_like(x_in)
for batch_offset in range(0, x_out.shape[0], batch_size):
a = batch_offset
b = a + batch_size
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]})
else:
x_out = torch.zeros_like(x_in)
batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
for batch_offset in range(0, tensor.shape[0], batch_size):
a = batch_offset
b = min(a + batch_size, tensor.shape[0])
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [tensor[a:b]], "c_concat": [image_cond_in[a:b]]})
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
devices.test_for_nans(x_out, "unet")
if opts.live_preview_content == "Prompt":
store_latent(x_out[0:uncond.shape[0]])
elif opts.live_preview_content == "Negative prompt":
store_latent(x_out[-uncond.shape[0]:])
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
if self.mask is not None:
denoised = self.init_latent * self.mask + self.nmask * denoised
self.step += 1
return denoised
class TorchHijack:
def __init__(self, sampler_noises):
# Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
# implementation.
self.sampler_noises = deque(sampler_noises)
def __getattr__(self, item):
if item == 'randn_like':
return self.randn_like
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
def randn_like(self, x):
if self.sampler_noises:
noise = self.sampler_noises.popleft()
if noise.shape == x.shape:
return noise
if x.device.type == 'mps':
return torch.randn_like(x, device=devices.cpu).to(x.device)
else:
return torch.randn_like(x)
# MPS fix for randn in torchsde
def torchsde_randn(size, dtype, device, seed):
if device.type == 'mps':
generator = torch.Generator(devices.cpu).manual_seed(int(seed))
return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device)
else:
generator = torch.Generator(device).manual_seed(int(seed))
return torch.randn(size, dtype=dtype, device=device, generator=generator)
torchsde._brownian.brownian_interval._randn = torchsde_randn
class KDiffusionSampler:
def __init__(self, funcname, sd_model):
denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
self.funcname = funcname
self.func = getattr(k_diffusion.sampling, self.funcname)
self.extra_params = sampler_extra_params.get(funcname, [])
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
self.sampler_noises = None
self.stop_at = None
self.eta = None
self.default_eta = 1.0
self.config = None
self.last_latent = None
self.conditioning_key = sd_model.model.conditioning_key
def callback_state(self, d):
step = d['i']
latent = d["denoised"]
if opts.live_preview_content == "Combined":
store_latent(latent)
self.last_latent = latent
if self.stop_at is not None and step > self.stop_at:
raise InterruptedException
state.sampling_step = step
shared.total_tqdm.update()
def launch_sampling(self, steps, func):
state.sampling_steps = steps
state.sampling_step = 0
try:
return func()
except InterruptedException:
return self.last_latent
def number_of_needed_noises(self, p):
return p.steps
def initialize(self, p):
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap.step = 0
self.eta = p.eta or opts.eta_ancestral
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
extra_params_kwargs = {}
for param_name in self.extra_params:
if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
extra_params_kwargs[param_name] = getattr(p, param_name)
if 'eta' in inspect.signature(self.func).parameters:
extra_params_kwargs['eta'] = self.eta
return extra_params_kwargs
def get_sigmas(self, p, steps):
discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
discard_next_to_last_sigma = True
p.extra_generation_params["Discard penultimate sigma"] = True
steps += 1 if discard_next_to_last_sigma else 0
if p.sampler_noise_scheduler_override:
sigmas = p.sampler_noise_scheduler_override(steps)
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
else:
sigmas = self.model_wrap.get_sigmas(steps)
if discard_next_to_last_sigma:
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
return sigmas
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = setup_img2img_steps(p, steps)
sigmas = self.get_sigmas(p, steps)
sigma_sched = sigmas[steps - t_enc - 1:]
xi = x + noise * sigma_sched[0]
extra_params_kwargs = self.initialize(p)
if 'sigma_min' in inspect.signature(self.func).parameters:
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
extra_params_kwargs['sigma_min'] = sigma_sched[-2]
if 'sigma_max' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigma_max'] = sigma_sched[0]
if 'n' in inspect.signature(self.func).parameters:
extra_params_kwargs['n'] = len(sigma_sched) - 1
if 'sigma_sched' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigma_sched'] = sigma_sched
if 'sigmas' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigmas'] = sigma_sched
self.model_wrap_cfg.init_latent = x
self.last_latent = x
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None):
steps = steps or p.steps
sigmas = self.get_sigmas(p, steps)
x = x * sigmas[0]
extra_params_kwargs = self.initialize(p)
if 'sigma_min' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
if 'n' in inspect.signature(self.func).parameters:
extra_params_kwargs['n'] = steps
else:
extra_params_kwargs['sigmas'] = sigmas
self.last_latent = x
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples

View File

@ -0,0 +1,78 @@
from collections import namedtuple
import numpy as np
import torch
from PIL import Image
import torchsde._brownian.brownian_interval
from modules import devices, processing, images, sd_vae_approx
from modules.shared import opts, state
import modules.shared as shared
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
def setup_img2img_steps(p, steps=None):
if opts.img2img_fix_steps or steps is not None:
requested_steps = (steps or p.steps)
steps = int(requested_steps / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
t_enc = requested_steps - 1
else:
steps = p.steps
t_enc = int(min(p.denoising_strength, 0.999) * steps)
return steps, t_enc
approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2}
def single_sample_to_image(sample, approximation=None):
if approximation is None:
approximation = approximation_indexes.get(opts.show_progress_type, 0)
if approximation == 2:
x_sample = sd_vae_approx.cheap_approximation(sample)
elif approximation == 1:
x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
else:
x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0]
x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
x_sample = x_sample.astype(np.uint8)
return Image.fromarray(x_sample)
def sample_to_image(samples, index=0, approximation=None):
return single_sample_to_image(samples[index], approximation)
def samples_to_image_grid(samples, approximation=None):
return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples])
def store_latent(decoded):
state.current_latent = decoded
if opts.live_previews_enable and opts.show_progress_every_n_steps > 0 and shared.state.sampling_step % opts.show_progress_every_n_steps == 0:
if not shared.parallel_processing_allowed:
shared.state.assign_current_image(sample_to_image(decoded))
class InterruptedException(BaseException):
pass
# MPS fix for randn in torchsde
# XXX move this to separate file for MPS
def torchsde_randn(size, dtype, device, seed):
if device.type == 'mps':
generator = torch.Generator(devices.cpu).manual_seed(int(seed))
return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device)
else:
generator = torch.Generator(device).manual_seed(int(seed))
return torch.randn(size, dtype=dtype, device=device, generator=generator)
torchsde._brownian.brownian_interval._randn = torchsde_randn

View File

@ -0,0 +1,160 @@
import math
import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms
import numpy as np
import torch
from modules.shared import state
from modules import sd_samplers_common, prompt_parser, shared
samplers_data_compvis = [
sd_samplers_common.SamplerData('DDIM', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.ddim.DDIMSampler, model), [], {}),
sd_samplers_common.SamplerData('PLMS', lambda model: VanillaStableDiffusionSampler(ldm.models.diffusion.plms.PLMSSampler, model), [], {}),
]
class VanillaStableDiffusionSampler:
def __init__(self, constructor, sd_model):
self.sampler = constructor(sd_model)
self.is_plms = hasattr(self.sampler, 'p_sample_plms')
self.orig_p_sample_ddim = self.sampler.p_sample_plms if self.is_plms else self.sampler.p_sample_ddim
self.mask = None
self.nmask = None
self.init_latent = None
self.sampler_noises = None
self.step = 0
self.stop_at = None
self.eta = None
self.config = None
self.last_latent = None
self.conditioning_key = sd_model.model.conditioning_key
def number_of_needed_noises(self, p):
return 0
def launch_sampling(self, steps, func):
state.sampling_steps = steps
state.sampling_step = 0
try:
return func()
except sd_samplers_common.InterruptedException:
return self.last_latent
def p_sample_ddim_hook(self, x_dec, cond, ts, unconditional_conditioning, *args, **kwargs):
if state.interrupted or state.skipped:
raise sd_samplers_common.InterruptedException
if self.stop_at is not None and self.step > self.stop_at:
raise sd_samplers_common.InterruptedException
# Have to unwrap the inpainting conditioning here to perform pre-processing
image_conditioning = None
if isinstance(cond, dict):
image_conditioning = cond["c_concat"][0]
cond = cond["c_crossattn"][0]
unconditional_conditioning = unconditional_conditioning["c_crossattn"][0]
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
unconditional_conditioning = prompt_parser.reconstruct_cond_batch(unconditional_conditioning, self.step)
assert all([len(conds) == 1 for conds in conds_list]), 'composition via AND is not supported for DDIM/PLMS samplers'
cond = tensor
# for DDIM, shapes must match, we can't just process cond and uncond independently;
# filling unconditional_conditioning with repeats of the last vector to match length is
# not 100% correct but should work well enough
if unconditional_conditioning.shape[1] < cond.shape[1]:
last_vector = unconditional_conditioning[:, -1:]
last_vector_repeated = last_vector.repeat([1, cond.shape[1] - unconditional_conditioning.shape[1], 1])
unconditional_conditioning = torch.hstack([unconditional_conditioning, last_vector_repeated])
elif unconditional_conditioning.shape[1] > cond.shape[1]:
unconditional_conditioning = unconditional_conditioning[:, :cond.shape[1]]
if self.mask is not None:
img_orig = self.sampler.model.q_sample(self.init_latent, ts)
x_dec = img_orig * self.mask + self.nmask * x_dec
# Wrap the image conditioning back up since the DDIM code can accept the dict directly.
# Note that they need to be lists because it just concatenates them later.
if image_conditioning is not None:
cond = {"c_concat": [image_conditioning], "c_crossattn": [cond]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
res = self.orig_p_sample_ddim(x_dec, cond, ts, unconditional_conditioning=unconditional_conditioning, *args, **kwargs)
if self.mask is not None:
self.last_latent = self.init_latent * self.mask + self.nmask * res[1]
else:
self.last_latent = res[1]
sd_samplers_common.store_latent(self.last_latent)
self.step += 1
state.sampling_step = self.step
shared.total_tqdm.update()
return res
def initialize(self, p):
self.eta = p.eta if p.eta is not None else shared.opts.eta_ddim
if self.eta != 0.0:
p.extra_generation_params["Eta DDIM"] = self.eta
for fieldname in ['p_sample_ddim', 'p_sample_plms']:
if hasattr(self.sampler, fieldname):
setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
self.mask = p.mask if hasattr(p, 'mask') else None
self.nmask = p.nmask if hasattr(p, 'nmask') else None
def adjust_steps_if_invalid(self, p, num_steps):
if (self.config.name == 'DDIM' and p.ddim_discretize == 'uniform') or (self.config.name == 'PLMS'):
valid_step = 999 / (1000 // num_steps)
if valid_step == math.floor(valid_step):
return int(valid_step) + 1
return num_steps
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
steps = self.adjust_steps_if_invalid(p, steps)
self.initialize(p)
self.sampler.make_schedule(ddim_num_steps=steps, ddim_eta=self.eta, ddim_discretize=p.ddim_discretize, verbose=False)
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
self.init_latent = x
self.last_latent = x
self.step = 0
# Wrap the conditioning models with additional image conditioning for inpainting model
if image_conditioning is not None:
conditioning = {"c_concat": [image_conditioning], "c_crossattn": [conditioning]}
unconditional_conditioning = {"c_concat": [image_conditioning], "c_crossattn": [unconditional_conditioning]}
samples = self.launch_sampling(t_enc + 1, lambda: self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning))
return samples
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
self.initialize(p)
self.init_latent = None
self.last_latent = x
self.step = 0
steps = self.adjust_steps_if_invalid(p, steps or p.steps)
# Wrap the conditioning models with additional image conditioning for inpainting model
# dummy_for_plms is needed because PLMS code checks the first item in the dict to have the right shape
if image_conditioning is not None:
conditioning = {"dummy_for_plms": np.zeros((conditioning.shape[0],)), "c_crossattn": [conditioning], "c_concat": [image_conditioning]}
unconditional_conditioning = {"c_crossattn": [unconditional_conditioning], "c_concat": [image_conditioning]}
samples_ddim = self.launch_sampling(steps, lambda: self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x, eta=self.eta)[0])
return samples_ddim

View File

@ -0,0 +1,298 @@
from collections import deque
import torch
import inspect
import k_diffusion.sampling
from modules import prompt_parser, devices, sd_samplers_common
from modules.shared import opts, state
import modules.shared as shared
from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback
samplers_k_diffusion = [
('Euler a', 'sample_euler_ancestral', ['k_euler_a', 'k_euler_ancestral'], {}),
('Euler', 'sample_euler', ['k_euler'], {}),
('LMS', 'sample_lms', ['k_lms'], {}),
('Heun', 'sample_heun', ['k_heun'], {}),
('DPM2', 'sample_dpm_2', ['k_dpm_2'], {'discard_next_to_last_sigma': True}),
('DPM2 a', 'sample_dpm_2_ancestral', ['k_dpm_2_a'], {'discard_next_to_last_sigma': True}),
('DPM++ 2S a', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a'], {}),
('DPM++ 2M', 'sample_dpmpp_2m', ['k_dpmpp_2m'], {}),
('DPM++ SDE', 'sample_dpmpp_sde', ['k_dpmpp_sde'], {}),
('DPM fast', 'sample_dpm_fast', ['k_dpm_fast'], {}),
('DPM adaptive', 'sample_dpm_adaptive', ['k_dpm_ad'], {}),
('LMS Karras', 'sample_lms', ['k_lms_ka'], {'scheduler': 'karras'}),
('DPM2 Karras', 'sample_dpm_2', ['k_dpm_2_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
('DPM2 a Karras', 'sample_dpm_2_ancestral', ['k_dpm_2_a_ka'], {'scheduler': 'karras', 'discard_next_to_last_sigma': True}),
('DPM++ 2S a Karras', 'sample_dpmpp_2s_ancestral', ['k_dpmpp_2s_a_ka'], {'scheduler': 'karras'}),
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras'}),
]
samplers_data_k_diffusion = [
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
for label, funcname, aliases, options in samplers_k_diffusion
if hasattr(k_diffusion.sampling, funcname)
]
sampler_extra_params = {
'sample_euler': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
'sample_heun': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
}
class CFGDenoiser(torch.nn.Module):
"""
Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet)
that can take a noisy picture and produce a noise-free picture using two guidances (prompts)
instead of one. Originally, the second prompt is just an empty string, but we use non-empty
negative prompt.
"""
def __init__(self, model):
super().__init__()
self.inner_model = model
self.mask = None
self.nmask = None
self.init_latent = None
self.step = 0
def combine_denoised(self, x_out, conds_list, uncond, cond_scale):
denoised_uncond = x_out[-uncond.shape[0]:]
denoised = torch.clone(denoised_uncond)
for i, conds in enumerate(conds_list):
for cond_index, weight in conds:
denoised[i] += (x_out[cond_index] - denoised_uncond[i]) * (weight * cond_scale)
return denoised
def forward(self, x, sigma, uncond, cond, cond_scale, image_cond):
if state.interrupted or state.skipped:
raise sd_samplers_common.InterruptedException
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
batch_size = len(conds_list)
repeats = [len(conds_list[i]) for i in range(batch_size)]
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond])
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps)
cfg_denoiser_callback(denoiser_params)
x_in = denoiser_params.x
image_cond_in = denoiser_params.image_cond
sigma_in = denoiser_params.sigma
if tensor.shape[1] == uncond.shape[1]:
cond_in = torch.cat([tensor, uncond])
if shared.batch_cond_uncond:
x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]})
else:
x_out = torch.zeros_like(x_in)
for batch_offset in range(0, x_out.shape[0], batch_size):
a = batch_offset
b = a + batch_size
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]})
else:
x_out = torch.zeros_like(x_in)
batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
for batch_offset in range(0, tensor.shape[0], batch_size):
a = batch_offset
b = min(a + batch_size, tensor.shape[0])
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [tensor[a:b]], "c_concat": [image_cond_in[a:b]]})
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
devices.test_for_nans(x_out, "unet")
if opts.live_preview_content == "Prompt":
sd_samplers_common.store_latent(x_out[0:uncond.shape[0]])
elif opts.live_preview_content == "Negative prompt":
sd_samplers_common.store_latent(x_out[-uncond.shape[0]:])
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale)
if self.mask is not None:
denoised = self.init_latent * self.mask + self.nmask * denoised
self.step += 1
return denoised
class TorchHijack:
def __init__(self, sampler_noises):
# Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based
# implementation.
self.sampler_noises = deque(sampler_noises)
def __getattr__(self, item):
if item == 'randn_like':
return self.randn_like
if hasattr(torch, item):
return getattr(torch, item)
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, item))
def randn_like(self, x):
if self.sampler_noises:
noise = self.sampler_noises.popleft()
if noise.shape == x.shape:
return noise
if x.device.type == 'mps':
return torch.randn_like(x, device=devices.cpu).to(x.device)
else:
return torch.randn_like(x)
class KDiffusionSampler:
def __init__(self, funcname, sd_model):
denoiser = k_diffusion.external.CompVisVDenoiser if sd_model.parameterization == "v" else k_diffusion.external.CompVisDenoiser
self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
self.funcname = funcname
self.func = getattr(k_diffusion.sampling, self.funcname)
self.extra_params = sampler_extra_params.get(funcname, [])
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
self.sampler_noises = None
self.stop_at = None
self.eta = None
self.config = None
self.last_latent = None
self.conditioning_key = sd_model.model.conditioning_key
def callback_state(self, d):
step = d['i']
latent = d["denoised"]
if opts.live_preview_content == "Combined":
sd_samplers_common.store_latent(latent)
self.last_latent = latent
if self.stop_at is not None and step > self.stop_at:
raise sd_samplers_common.InterruptedException
state.sampling_step = step
shared.total_tqdm.update()
def launch_sampling(self, steps, func):
state.sampling_steps = steps
state.sampling_step = 0
try:
return func()
except sd_samplers_common.InterruptedException:
return self.last_latent
def number_of_needed_noises(self, p):
return p.steps
def initialize(self, p):
self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap_cfg.step = 0
self.eta = p.eta if p.eta is not None else opts.eta_ancestral
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
extra_params_kwargs = {}
for param_name in self.extra_params:
if hasattr(p, param_name) and param_name in inspect.signature(self.func).parameters:
extra_params_kwargs[param_name] = getattr(p, param_name)
if 'eta' in inspect.signature(self.func).parameters:
if self.eta != 1.0:
p.extra_generation_params["Eta"] = self.eta
extra_params_kwargs['eta'] = self.eta
return extra_params_kwargs
def get_sigmas(self, p, steps):
discard_next_to_last_sigma = self.config is not None and self.config.options.get('discard_next_to_last_sigma', False)
if opts.always_discard_next_to_last_sigma and not discard_next_to_last_sigma:
discard_next_to_last_sigma = True
p.extra_generation_params["Discard penultimate sigma"] = True
steps += 1 if discard_next_to_last_sigma else 0
if p.sampler_noise_scheduler_override:
sigmas = p.sampler_noise_scheduler_override(steps)
elif self.config is not None and self.config.options.get('scheduler', None) == 'karras':
sigma_min, sigma_max = (0.1, 10) if opts.use_old_karras_scheduler_sigmas else (self.model_wrap.sigmas[0].item(), self.model_wrap.sigmas[-1].item())
sigmas = k_diffusion.sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, device=shared.device)
else:
sigmas = self.model_wrap.get_sigmas(steps)
if discard_next_to_last_sigma:
sigmas = torch.cat([sigmas[:-2], sigmas[-1:]])
return sigmas
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None):
steps, t_enc = sd_samplers_common.setup_img2img_steps(p, steps)
sigmas = self.get_sigmas(p, steps)
sigma_sched = sigmas[steps - t_enc - 1:]
xi = x + noise * sigma_sched[0]
extra_params_kwargs = self.initialize(p)
if 'sigma_min' in inspect.signature(self.func).parameters:
## last sigma is zero which isn't allowed by DPM Fast & Adaptive so taking value before last
extra_params_kwargs['sigma_min'] = sigma_sched[-2]
if 'sigma_max' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigma_max'] = sigma_sched[0]
if 'n' in inspect.signature(self.func).parameters:
extra_params_kwargs['n'] = len(sigma_sched) - 1
if 'sigma_sched' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigma_sched'] = sigma_sched
if 'sigmas' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigmas'] = sigma_sched
self.model_wrap_cfg.init_latent = x
self.last_latent = x
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples
def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning = None):
steps = steps or p.steps
sigmas = self.get_sigmas(p, steps)
x = x * sigmas[0]
extra_params_kwargs = self.initialize(p)
if 'sigma_min' in inspect.signature(self.func).parameters:
extra_params_kwargs['sigma_min'] = self.model_wrap.sigmas[0].item()
extra_params_kwargs['sigma_max'] = self.model_wrap.sigmas[-1].item()
if 'n' in inspect.signature(self.func).parameters:
extra_params_kwargs['n'] = steps
else:
extra_params_kwargs['sigmas'] = sigmas
self.last_latent = x
samples = self.launch_sampling(steps, lambda: self.func(self.model_wrap_cfg, x, extra_args={
'cond': conditioning,
'image_cond': image_conditioning,
'uncond': unconditional_conditioning,
'cond_scale': p.cfg_scale
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
return samples

View File

@ -3,13 +3,12 @@ import safetensors.torch
import os
import collections
from collections import namedtuple
from modules import shared, devices, script_callbacks, sd_models
from modules.paths import models_path
from modules import paths, shared, devices, script_callbacks, sd_models
import glob
from copy import deepcopy
vae_path = os.path.abspath(os.path.join(models_path, "VAE"))
vae_path = os.path.abspath(os.path.join(paths.models_path, "VAE"))
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
vae_dict = {}

View File

@ -13,17 +13,19 @@ import modules.interrogate
import modules.memmon
import modules.styles
import modules.devices as devices
from modules import localization, sd_vae, extensions, script_loading, errors, ui_components
from modules.paths import models_path, script_path, sd_path
from modules import localization, extensions, script_loading, errors, ui_components, shared_items
from modules.paths import models_path, script_path, data_path
demo = None
sd_default_config = os.path.join(script_path, "configs/v1-inference.yaml")
sd_configs_path = os.path.join(script_path, "configs")
sd_default_config = os.path.join(sd_configs_path, "v1-inference.yaml")
sd_model_file = os.path.join(script_path, 'model.ckpt')
default_sd_model_file = sd_model_file
parser = argparse.ArgumentParser()
parser.add_argument("--data-dir", type=str, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored",)
parser.add_argument("--config", type=str, default=sd_default_config, help="path to config which constructs model",)
parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",)
parser.add_argument("--ckpt-dir", type=str, default=None, help="Path to directory with stable diffusion checkpoints")
@ -34,7 +36,7 @@ parser.add_argument("--no-half", action='store_true', help="do not switch the mo
parser.add_argument("--no-half-vae", action='store_true', help="do not switch the VAE model to 16-bit floats")
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)")
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
parser.add_argument("--embeddings-dir", type=str, default=os.path.join(data_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)")
parser.add_argument("--textual-inversion-templates-dir", type=str, default=os.path.join(script_path, 'textual_inversion_templates'), help="directory with textual inversion templates")
parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory")
parser.add_argument("--localizations-dir", type=str, default=os.path.join(script_path, 'localizations'), help="localizations directory")
@ -45,6 +47,7 @@ parser.add_argument("--lowram", action='store_true', help="load stable diffusion
parser.add_argument("--always-batch-cond-uncond", action='store_true', help="disables cond/uncond batching that is enabled to save memory with --medvram or --lowvram")
parser.add_argument("--unload-gfpgan", action='store_true', help="does not do anything.")
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
parser.add_argument("--upcast-sampling", action='store_true', help="upcast sampling. No effect with --no-half. Usually produces similar results to --no-half with better performance while using less memory.")
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site")
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
parser.add_argument("--ngrok-region", type=str, help="The region in which ngrok should start.", default="us")
@ -57,6 +60,7 @@ parser.add_argument("--realesrgan-models-path", type=str, help="Path to director
parser.add_argument("--clip-models-path", type=str, help="Path to directory with CLIP model file(s).", default=None)
parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
parser.add_argument("--xformers-flash-attention", action='store_true', help="enable xformers with Flash Attention to improve reproducibility (supported for SD2.x or variant only)")
parser.add_argument("--deepdanbooru", action='store_true', help="does not do anything")
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables Doggettx's cross-attention layer optimization. By default, it's on for torch cuda.")
parser.add_argument("--opt-sub-quad-attention", action='store_true', help="enable memory efficient sub-quadratic cross-attention layer optimization")
@ -71,16 +75,16 @@ parser.add_argument("--use-cpu", nargs='+', help="use CPU as torch device for sp
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(script_path, 'ui-config.json'))
parser.add_argument("--ui-config-file", type=str, help="filename to use for ui configuration", default=os.path.join(data_path, 'ui-config.json'))
parser.add_argument("--hide-ui-dir-config", action='store_true', help="hide directory configuration from webui", default=False)
parser.add_argument("--freeze-settings", action='store_true', help="disable editing settings", default=False)
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(script_path, 'config.json'))
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default=os.path.join(data_path, 'config.json'))
parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option")
parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
parser.add_argument("--gradio-img2img-tool", type=str, help='does not do anything')
parser.add_argument("--gradio-inpaint-tool", type=str, help="does not do anything")
parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last")
parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(script_path, 'styles.csv'))
parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(data_path, 'styles.csv'))
parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False)
parser.add_argument("--theme", type=str, help="launches the UI with light or dark theme", default=None)
parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False)
@ -101,6 +105,8 @@ parser.add_argument("--tls-keyfile", type=str, help="Partially enables TLS, requ
parser.add_argument("--tls-certfile", type=str, help="Partially enables TLS, requires --tls-keyfile to fully function", default=None)
parser.add_argument("--server-name", type=str, help="Sets hostname of server", default=None)
parser.add_argument("--gradio-queue", action='store_true', help="Uses gradio queue; experimental option; breaks restart UI button")
parser.add_argument("--skip-version-check", action='store_true', help="Do not check versions of torch and xformers")
script_loading.preload_extensions(extensions.extensions_dir, parser)
@ -123,12 +129,13 @@ restricted_opts = {
ui_reorder_categories = [
"inpaint",
"sampler",
"checkboxes",
"hires_fix",
"dimensions",
"cfg",
"seed",
"checkboxes",
"hires_fix",
"batch",
"override_settings",
"scripts",
]
@ -262,12 +269,6 @@ interrogator = modules.interrogate.InterrogateModels("interrogate")
face_restorers = []
def realesrgan_models_names():
import modules.realesrgan_model
return [x.name for x in modules.realesrgan_model.get_realesrgan_models(None)]
class OptionInfo:
def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None):
self.default = default
@ -326,7 +327,7 @@ options_templates.update(options_section(('saving-images', "Saving images/grids"
"jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}),
"export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"),
"use_original_name_batch": OptionInfo(False, "Use original name for output filename during batch process in extras tab"),
"use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"),
"use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"),
"save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"),
"do_not_add_watermark": OptionInfo(False, "Do not add watermark to images"),
@ -348,17 +349,17 @@ options_templates.update(options_section(('saving-paths', "Paths for saving"), {
}))
options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), {
"save_to_dirs": OptionInfo(False, "Save images to a subdirectory"),
"grid_save_to_dirs": OptionInfo(False, "Save grids to a subdirectory"),
"save_to_dirs": OptionInfo(True, "Save images to a subdirectory"),
"grid_save_to_dirs": OptionInfo(True, "Save grids to a subdirectory"),
"use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"),
"directories_filename_pattern": OptionInfo("", "Directory name pattern", component_args=hide_dirs),
"directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs),
"directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}),
}))
options_templates.update(options_section(('upscaling', "Upscaling"), {
"ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}),
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}),
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
}))
@ -395,7 +396,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints),
"sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
"sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": ["Automatic", "None"] + list(sd_vae.vae_dict)}, refresh=sd_vae.refresh_vae_list),
"sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list),
"sd_vae_as_default": OptionInfo(True, "Ignore selected VAE for stable diffusion checkpoints that have their own .vae.pt next to them"),
"inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}),
@ -407,7 +408,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
"comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
"extra_networks_default_multiplier": OptionInfo(1.0, "Multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
}))
options_templates.update(options_section(('compatibility', "Compatibility"), {
@ -423,6 +424,7 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
"interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
"interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
"interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file (0 = No limit)"),
"interrogate_clip_skip_categories": OptionInfo([], "CLIP: skip inquire categories", gr.CheckboxGroup, lambda: {"choices": modules.interrogate.category_types()}, refresh=modules.interrogate.category_types),
"interrogate_deepbooru_score_threshold": OptionInfo(0.5, "Interrogate: deepbooru score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}),
"deepbooru_sort_alpha": OptionInfo(True, "Interrogate: deepbooru sort alphabetically"),
"deepbooru_use_spaces": OptionInfo(False, "use spaces for tags in deepbooru"),
@ -430,12 +432,18 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
"deepbooru_filter_tags": OptionInfo("", "filter out those tags from deepbooru output (separated by comma)"),
}))
options_templates.update(options_section(('extra_networks', "Extra Networks"), {
"extra_networks_default_view": OptionInfo("cards", "Default view for Extra Networks", gr.Dropdown, {"choices": ["cards", "thumbs"]}),
"extra_networks_default_multiplier": OptionInfo(1.0, "Multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}),
"sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": [""] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks),
}))
options_templates.update(options_section(('ui', "User interface"), {
"return_grid": OptionInfo(True, "Show grid in results for web"),
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
"add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
"add_model_name_to_info": OptionInfo(True, "Add model name to generation information"),
"disable_weights_auto_swap": OptionInfo(False, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."),
"disable_weights_auto_swap": OptionInfo(True, "When reading generation parameters from text into UI (from PNG info or pasted text), do not change the selected model/checkpoint."),
"send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
"send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
"font": OptionInfo("", "Font for image grids that have text"),
@ -474,6 +482,12 @@ options_templates.update(options_section(('sampler-params', "Sampler parameters"
'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma"),
}))
options_templates.update(options_section(('postprocessing', "Postprocessing"), {
'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
}))
options_templates.update(options_section((None, "Hidden options"), {
"disabled_extensions": OptionInfo([], "Disable those extensions"),
"sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"),
@ -594,11 +608,37 @@ class Options:
self.data_labels = {k: v for k, v in sorted(settings_items, key=lambda x: section_ids[x[1].section])}
def cast_value(self, key, value):
"""casts an arbitrary to the same type as this setting's value with key
Example: cast_value("eta_noise_seed_delta", "12") -> returns 12 (an int rather than str)
"""
if value is None:
return None
default_value = self.data_labels[key].default
if default_value is None:
default_value = getattr(self, key, None)
if default_value is None:
return None
expected_type = type(default_value)
if expected_type == bool and value == "False":
value = False
else:
value = expected_type(value)
return value
opts = Options()
if os.path.exists(config_filename):
opts.load(config_filename)
settings_components = None
"""assinged from ui.py, a mapping on setting anmes to gradio components repsponsible for those settings"""
latent_upscale_default_mode = "Latent"
latent_upscale_modes = {
"Latent": {"mode": "bilinear", "antialias": False},

23
modules/shared_items.py Normal file
View File

@ -0,0 +1,23 @@
def realesrgan_models_names():
import modules.realesrgan_model
return [x.name for x in modules.realesrgan_model.get_realesrgan_models(None)]
def postprocessing_scripts():
import modules.scripts
return modules.scripts.scripts_postproc.scripts
def sd_vae_items():
import modules.sd_vae
return ["Automatic", "None"] + list(modules.sd_vae.vae_dict)
def refresh_vae_list():
import modules.sd_vae
return modules.sd_vae.refresh_vae_list

View File

@ -67,7 +67,7 @@ def _summarize_chunk(
max_score, _ = torch.max(attn_weights, -1, keepdim=True)
max_score = max_score.detach()
exp_weights = torch.exp(attn_weights - max_score)
exp_values = torch.bmm(exp_weights, value)
exp_values = torch.bmm(exp_weights, value) if query.device.type == 'mps' else torch.bmm(exp_weights, value.to(exp_weights.dtype)).to(value.dtype)
max_score = max_score.squeeze(-1)
return AttnChunk(exp_values, exp_weights.sum(dim=-1), max_score)
@ -129,7 +129,7 @@ def _get_attention_scores_no_kv_chunking(
)
attn_probs = attn_scores.softmax(dim=-1)
del attn_scores
hidden_states_slice = torch.bmm(attn_probs, value)
hidden_states_slice = torch.bmm(attn_probs, value) if query.device.type == 'mps' else torch.bmm(attn_probs, value.to(attn_probs.dtype)).to(value.dtype)
return hidden_states_slice

View File

@ -6,8 +6,7 @@ import sys
import tqdm
import time
from modules import shared, images, deepbooru
from modules.paths import models_path
from modules import paths, shared, images, deepbooru
from modules.shared import opts, cmd_opts
from modules.textual_inversion import autocrop
@ -199,7 +198,7 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre
dnn_model_path = None
try:
dnn_model_path = autocrop.download_and_cache_models(os.path.join(models_path, "opencv"))
dnn_model_path = autocrop.download_and_cache_models(os.path.join(paths.models_path, "opencv"))
except Exception as e:
print("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", e)

View File

@ -112,6 +112,7 @@ class EmbeddingDatabase:
self.skipped_embeddings = {}
self.expected_shape = -1
self.embedding_dirs = {}
self.previously_displayed_embeddings = ()
def add_embedding_dir(self, path):
self.embedding_dirs[path] = DirWithTextualInversionEmbeddings(path)
@ -194,7 +195,7 @@ class EmbeddingDatabase:
if not os.path.isdir(embdir.path):
return
for root, dirs, fns in os.walk(embdir.path):
for root, dirs, fns in os.walk(embdir.path, followlinks=True):
for fn in fns:
try:
fullfn = os.path.join(root, fn)
@ -228,9 +229,12 @@ class EmbeddingDatabase:
self.load_from_dir(embdir)
embdir.update()
print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}")
if len(self.skipped_embeddings) > 0:
print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}")
displayed_embeddings = (tuple(self.word_embeddings.keys()), tuple(self.skipped_embeddings.keys()))
if self.previously_displayed_embeddings != displayed_embeddings:
self.previously_displayed_embeddings = displayed_embeddings
print(f"Textual inversion embeddings loaded({len(self.word_embeddings)}): {', '.join(self.word_embeddings.keys())}")
if len(self.skipped_embeddings) > 0:
print(f"Textual inversion embeddings skipped({len(self.skipped_embeddings)}): {', '.join(self.skipped_embeddings.keys())}")
def find_embedding_at_position(self, tokens, offset):
token = tokens[offset]

35
modules/timer.py Normal file
View File

@ -0,0 +1,35 @@
import time
class Timer:
def __init__(self):
self.start = time.time()
self.records = {}
self.total = 0
def elapsed(self):
end = time.time()
res = end - self.start
self.start = end
return res
def record(self, category, extra_time=0):
e = self.elapsed()
if category not in self.records:
self.records[category] = 0
self.records[category] += e + extra_time
self.total += e + extra_time
def summary(self):
res = f"{self.total:.1f}s"
additions = [x for x in self.records.items() if x[1] >= 0.1]
if not additions:
return res
res += " ("
res += ", ".join([f"{category}: {time_taken:.1f}s" for category, time_taken in additions])
res += ")"
return res

View File

@ -1,5 +1,6 @@
import modules.scripts
from modules import sd_samplers
from modules.generation_parameters_copypaste import create_override_settings_dict
from modules.processing import StableDiffusionProcessing, Processed, StableDiffusionProcessingTxt2Img, \
StableDiffusionProcessingImg2Img, process_images
from modules.shared import opts, cmd_opts
@ -8,7 +9,9 @@ import modules.processing as processing
from modules.ui import plaintext_to_html
def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, *args):
def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, override_settings_texts, *args):
override_settings = create_override_settings_dict(override_settings_texts)
p = StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
@ -38,6 +41,7 @@ def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, step
hr_second_pass_steps=hr_second_pass_steps,
hr_resize_x=hr_resize_x,
hr_resize_y=hr_resize_y,
override_settings=override_settings,
)
p.scripts = modules.scripts.scripts_txt2img

View File

@ -5,7 +5,6 @@ import mimetypes
import os
import platform
import random
import subprocess as sp
import sys
import tempfile
import time
@ -20,9 +19,9 @@ import numpy as np
from PIL import Image, PngImagePlugin
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks
from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, postprocessing, ui_components, ui_common, ui_postprocessing
from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML
from modules.paths import script_path
from modules.paths import script_path, data_path
from modules.shared import opts, cmd_opts, restricted_opts
@ -41,6 +40,7 @@ from modules.sd_samplers import samplers, samplers_for_img2img
from modules.textual_inversion import textual_inversion
import modules.hypernetworks.ui
from modules.generation_parameters_copypaste import image_from_url_text
import modules.extras
warnings.filterwarnings("default" if opts.show_warnings else "ignore", category=UserWarning)
@ -86,87 +86,23 @@ css_hide_progressbar = """
random_symbol = '\U0001f3b2\ufe0f' # 🎲️
reuse_symbol = '\u267b\ufe0f' # ♻️
paste_symbol = '\u2199\ufe0f' # ↙
folder_symbol = '\U0001f4c2' # 📂
refresh_symbol = '\U0001f504' # 🔄
save_style_symbol = '\U0001f4be' # 💾
apply_style_symbol = '\U0001f4cb' # 📋
clear_prompt_symbol = '\U0001F5D1' # 🗑️
extra_networks_symbol = '\U0001F3B4' # 🎴
switch_values_symbol = '\U000021C5' # ⇅
def plaintext_to_html(text):
text = "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "</p>"
return text
return ui_common.plaintext_to_html(text)
def send_gradio_gallery_to_image(x):
if len(x) == 0:
return None
return image_from_url_text(x[0])
def save_files(js_data, images, do_make_zip, index):
import csv
filenames = []
fullfns = []
#quick dictionary to class object conversion. Its necessary due apply_filename_pattern requiring it
class MyObject:
def __init__(self, d=None):
if d is not None:
for key, value in d.items():
setattr(self, key, value)
data = json.loads(js_data)
p = MyObject(data)
path = opts.outdir_save
save_to_dirs = opts.use_save_to_dirs_for_ui
extension: str = opts.samples_format
start_index = 0
if index > -1 and opts.save_selected_only and (index >= data["index_of_first_image"]): # ensures we are looking at a specific non-grid picture, and we have save_selected_only
images = [images[index]]
start_index = index
os.makedirs(opts.outdir_save, exist_ok=True)
with open(os.path.join(opts.outdir_save, "log.csv"), "a", encoding="utf8", newline='') as file:
at_start = file.tell() == 0
writer = csv.writer(file)
if at_start:
writer.writerow(["prompt", "seed", "width", "height", "sampler", "cfgs", "steps", "filename", "negative_prompt"])
for image_index, filedata in enumerate(images, start_index):
image = image_from_url_text(filedata)
is_grid = image_index < p.index_of_first_image
i = 0 if is_grid else (image_index - p.index_of_first_image)
fullfn, txt_fullfn = save_image(image, path, "", seed=p.all_seeds[i], prompt=p.all_prompts[i], extension=extension, info=p.infotexts[image_index], grid=is_grid, p=p, save_to_dirs=save_to_dirs)
filename = os.path.relpath(fullfn, path)
filenames.append(filename)
fullfns.append(fullfn)
if txt_fullfn:
filenames.append(os.path.basename(txt_fullfn))
fullfns.append(txt_fullfn)
writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler_name"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]])
# Make Zip
if do_make_zip:
zip_filepath = os.path.join(path, "images.zip")
from zipfile import ZipFile
with ZipFile(zip_filepath, "w") as zip_file:
for i in range(len(fullfns)):
with open(fullfns[i], mode="rb") as f:
zip_file.writestr(filenames[i], f.read())
fullfns.insert(0, zip_filepath)
return gr.File.update(value=fullfns, visible=True), plaintext_to_html(f"Saved: {filenames[0]}")
def visit(x, func, path=""):
if hasattr(x, 'children'):
for c in x.children:
@ -445,18 +381,6 @@ def apply_setting(key, value):
return getattr(opts, key)
def update_generation_info(generation_info, html_info, img_index):
try:
generation_info = json.loads(generation_info)
if img_index < 0 or img_index >= len(generation_info["infotexts"]):
return html_info, gr.update()
return plaintext_to_html(generation_info["infotexts"][img_index]), gr.update()
except Exception:
pass
# if the json parse or anything else fails, just return the old html_info
return html_info, gr.update()
def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
def refresh():
refresh_method()
@ -477,107 +401,7 @@ def create_refresh_button(refresh_component, refresh_method, refreshed_args, ele
def create_output_panel(tabname, outdir):
def open_folder(f):
if not os.path.exists(f):
print(f'Folder "{f}" does not exist. After you create an image, the folder will be created.')
return
elif not os.path.isdir(f):
print(f"""
WARNING
An open_folder request was made with an argument that is not a folder.
This could be an error or a malicious attempt to run code on your computer.
Requested path was: {f}
""", file=sys.stderr)
return
if not shared.cmd_opts.hide_ui_dir_config:
path = os.path.normpath(f)
if platform.system() == "Windows":
os.startfile(path)
elif platform.system() == "Darwin":
sp.Popen(["open", path])
elif "microsoft-standard-WSL2" in platform.uname().release:
sp.Popen(["wsl-open", path])
else:
sp.Popen(["xdg-open", path])
with gr.Column(variant='panel', elem_id=f"{tabname}_results"):
with gr.Group(elem_id=f"{tabname}_gallery_container"):
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery").style(grid=4)
generation_info = None
with gr.Column():
with gr.Row(elem_id=f"image_buttons_{tabname}"):
open_folder_button = gr.Button(folder_symbol, elem_id="hidden_element" if shared.cmd_opts.hide_ui_dir_config else f'open_folder_{tabname}')
if tabname != "extras":
save = gr.Button('Save', elem_id=f'save_{tabname}')
save_zip = gr.Button('Zip', elem_id=f'save_zip_{tabname}')
buttons = parameters_copypaste.create_buttons(["img2img", "inpaint", "extras"])
open_folder_button.click(
fn=lambda: open_folder(opts.outdir_samples or outdir),
inputs=[],
outputs=[],
)
if tabname != "extras":
with gr.Row():
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False, elem_id=f'download_files_{tabname}')
with gr.Group():
html_info = gr.HTML(elem_id=f'html_info_{tabname}')
html_log = gr.HTML(elem_id=f'html_log_{tabname}')
generation_info = gr.Textbox(visible=False, elem_id=f'generation_info_{tabname}')
if tabname == 'txt2img' or tabname == 'img2img':
generation_info_button = gr.Button(visible=False, elem_id=f"{tabname}_generation_info_button")
generation_info_button.click(
fn=update_generation_info,
_js="function(x, y, z){ return [x, y, selected_gallery_index()] }",
inputs=[generation_info, html_info, html_info],
outputs=[html_info, html_info],
)
save.click(
fn=wrap_gradio_call(save_files),
_js="(x, y, z, w) => [x, y, false, selected_gallery_index()]",
inputs=[
generation_info,
result_gallery,
html_info,
html_info,
],
outputs=[
download_files,
html_log,
],
show_progress=False,
)
save_zip.click(
fn=wrap_gradio_call(save_files),
_js="(x, y, z, w) => [x, y, true, selected_gallery_index()]",
inputs=[
generation_info,
result_gallery,
html_info,
html_info,
],
outputs=[
download_files,
html_log,
]
)
else:
html_info_x = gr.HTML(elem_id=f'html_info_x_{tabname}')
html_info = gr.HTML(elem_id=f'html_info_{tabname}')
html_log = gr.HTML(elem_id=f'html_log_{tabname}')
parameters_copypaste.bind_buttons(buttons, result_gallery, "txt2img" if tabname == "txt2img" else None)
return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info, html_log
return ui_common.create_output_panel(tabname, outdir)
def create_sampler_and_steps_selection(choices, tabname):
@ -610,6 +434,18 @@ def get_value_for_setting(key):
return gr.update(value=value, **args)
def create_override_settings_dropdown(tabname, row):
dropdown = gr.Dropdown([], label="Override settings", visible=False, elem_id=f"{tabname}_override_settings", multiselect=True)
dropdown.change(
fn=lambda x: gr.Dropdown.update(visible=len(x) > 0),
inputs=[dropdown],
outputs=[dropdown],
)
return dropdown
def create_ui():
import modules.img2img
import modules.txt2img
@ -643,6 +479,7 @@ def create_ui():
width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="txt2img_width")
height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="txt2img_height")
res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="txt2img_res_switch_btn")
if opts.dimensions_and_batch_together:
with gr.Column(elem_id="txt2img_column_batch"):
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count")
@ -679,6 +516,10 @@ def create_ui():
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="txt2img_batch_count")
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="txt2img_batch_size")
elif category == "override_settings":
with FormRow(elem_id="txt2img_override_settings_row") as row:
override_settings = create_override_settings_dropdown('txt2img', row)
elif category == "scripts":
with FormGroup(elem_id="txt2img_script_container"):
custom_inputs = modules.scripts.scripts_txt2img.setup_ui()
@ -700,7 +541,6 @@ def create_ui():
)
txt2img_gallery, generation_info, html_info, html_log = create_output_panel("txt2img", opts.outdir_txt2img_samples)
parameters_copypaste.bind_buttons({"txt2img": txt2img_paste}, None, txt2img_prompt)
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
@ -731,6 +571,7 @@ def create_ui():
hr_second_pass_steps,
hr_resize_x,
hr_resize_y,
override_settings,
] + custom_inputs,
outputs=[
@ -745,6 +586,8 @@ def create_ui():
txt2img_prompt.submit(**txt2img_args)
submit.click(**txt2img_args)
res_switch_btn.click(lambda w, h: (h, w), inputs=[width, height], outputs=[width, height])
txt_prompt_img.change(
fn=modules.images.image_data,
inputs=[
@ -789,6 +632,9 @@ def create_ui():
*modules.scripts.scripts_txt2img.infotext_fields
]
parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields)
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
paste_button=txt2img_paste, tabname="txt2img", source_text_component=txt2img_prompt, source_image_component=None, override_settings_component=override_settings,
))
txt2img_preview_params = [
txt2img_prompt,
@ -869,9 +715,15 @@ def create_ui():
with gr.TabItem('Batch', id='batch', elem_id="img2img_batch_tab") as tab_batch:
hidden = '<br>Disabled when launched with --hide-ui-dir-config.' if shared.cmd_opts.hide_ui_dir_config else ''
gr.HTML(f"<p style='padding-bottom: 1em;' class=\"text-gray-500\">Process images in a directory on the same machine where the server is running.<br>Use an empty output directory to save pictures normally instead of writing to the output directory.{hidden}</p>")
gr.HTML(
f"<p style='padding-bottom: 1em;' class=\"text-gray-500\">Process images in a directory on the same machine where the server is running." +
f"<br>Use an empty output directory to save pictures normally instead of writing to the output directory." +
f"<br>Add inpaint batch mask directory to enable inpaint batch processing."
f"{hidden}</p>"
)
img2img_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, elem_id="img2img_batch_input_dir")
img2img_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, elem_id="img2img_batch_output_dir")
img2img_batch_inpaint_mask_dir = gr.Textbox(label="Inpaint batch mask directory (required for inpaint batch processing only)", **shared.hide_dirs, elem_id="img2img_batch_inpaint_mask_dir")
def copy_image(img):
if isinstance(img, dict) and 'image' in img:
@ -905,6 +757,7 @@ def create_ui():
width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="img2img_width")
height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="img2img_height")
res_switch_btn = ToolButton(value=switch_values_symbol, elem_id="img2img_res_switch_btn")
if opts.dimensions_and_batch_together:
with gr.Column(elem_id="img2img_column_batch"):
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count")
@ -919,7 +772,7 @@ def create_ui():
seed, reuse_seed, subseed, reuse_subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox = create_seed_inputs('img2img')
elif category == "checkboxes":
with FormRow(elem_id="img2img_checkboxes"):
with FormRow(elem_id="img2img_checkboxes", variant="compact"):
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="img2img_restore_faces")
tiling = gr.Checkbox(label='Tiling', value=False, elem_id="img2img_tiling")
@ -929,6 +782,10 @@ def create_ui():
batch_count = gr.Slider(minimum=1, step=1, label='Batch count', value=1, elem_id="img2img_batch_count")
batch_size = gr.Slider(minimum=1, maximum=8, step=1, label='Batch size', value=1, elem_id="img2img_batch_size")
elif category == "override_settings":
with FormRow(elem_id="img2img_override_settings_row") as row:
override_settings = create_override_settings_dropdown('img2img', row)
elif category == "scripts":
with FormGroup(elem_id="img2img_script_container"):
custom_inputs = modules.scripts.scripts_img2img.setup_ui()
@ -963,7 +820,6 @@ def create_ui():
)
img2img_gallery, generation_info, html_info, html_log = create_output_panel("img2img", opts.outdir_img2img_samples)
parameters_copypaste.bind_buttons({"img2img": img2img_paste}, None, img2img_prompt)
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
@ -1016,6 +872,8 @@ def create_ui():
inpainting_mask_invert,
img2img_batch_input_dir,
img2img_batch_output_dir,
img2img_batch_inpaint_mask_dir,
override_settings,
] + custom_inputs,
outputs=[
img2img_gallery,
@ -1043,6 +901,7 @@ def create_ui():
img2img_prompt.submit(**img2img_args)
submit.click(**img2img_args)
res_switch_btn.click(lambda w, h: (h, w), inputs=[width, height], outputs=[width, height])
img2img_interrogate.click(
fn=lambda *args: process_interrogate(interrogate, *args),
@ -1102,90 +961,14 @@ def create_ui():
]
parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields)
parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields)
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
paste_button=img2img_paste, tabname="img2img", source_text_component=img2img_prompt, source_image_component=None, override_settings_component=override_settings,
))
modules.scripts.scripts_current = None
with gr.Blocks(analytics_enabled=False) as extras_interface:
with gr.Row().style(equal_height=False):
with gr.Column(variant='compact'):
with gr.Tabs(elem_id="mode_extras"):
with gr.TabItem('Single Image', elem_id="extras_single_tab"):
extras_image = gr.Image(label="Source", source="upload", interactive=True, type="pil", elem_id="extras_image")
with gr.TabItem('Batch Process', elem_id="extras_batch_process_tab"):
image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file", elem_id="extras_image_batch")
with gr.TabItem('Batch from Directory', elem_id="extras_batch_directory_tab"):
extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, placeholder="A directory on the same machine where the server is running.", elem_id="extras_batch_input_dir")
extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, placeholder="Leave blank to save images to the default path.", elem_id="extras_batch_output_dir")
show_extras_results = gr.Checkbox(label='Show result images', value=True, elem_id="extras_show_extras_results")
submit = gr.Button('Generate', elem_id="extras_generate", variant='primary')
with gr.Tabs(elem_id="extras_resize_mode"):
with gr.TabItem('Scale by', elem_id="extras_scale_by_tab"):
upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id="extras_upscaling_resize")
with gr.TabItem('Scale to', elem_id="extras_scale_to_tab"):
with gr.Group():
with gr.Row():
upscaling_resize_w = gr.Number(label="Width", value=512, precision=0, elem_id="extras_upscaling_resize_w")
upscaling_resize_h = gr.Number(label="Height", value=512, precision=0, elem_id="extras_upscaling_resize_h")
upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop")
with gr.Group():
extras_upscaler_1 = gr.Radio(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index")
with gr.Group():
extras_upscaler_2 = gr.Radio(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index")
extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=1, elem_id="extras_upscaler_2_visibility")
with gr.Group():
gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, interactive=modules.gfpgan_model.have_gfpgan, elem_id="extras_gfpgan_visibility")
with gr.Group():
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, interactive=modules.codeformer_model.have_codeformer, elem_id="extras_codeformer_visibility")
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, interactive=modules.codeformer_model.have_codeformer, elem_id="extras_codeformer_weight")
with gr.Group():
upscale_before_face_fix = gr.Checkbox(label='Upscale Before Restoring Faces', value=False, elem_id="extras_upscale_before_face_fix")
result_images, html_info_x, html_info, html_log = create_output_panel("extras", opts.outdir_extras_samples)
submit.click(
fn=wrap_gradio_gpu_call(modules.extras.run_extras, extra_outputs=[None, '']),
_js="get_extras_tab_index",
inputs=[
dummy_component,
dummy_component,
extras_image,
image_batch,
extras_batch_input_dir,
extras_batch_output_dir,
show_extras_results,
gfpgan_visibility,
codeformer_visibility,
codeformer_weight,
upscaling_resize,
upscaling_resize_w,
upscaling_resize_h,
upscaling_crop,
extras_upscaler_1,
extras_upscaler_2,
extras_upscaler_2_visibility,
upscale_before_face_fix,
],
outputs=[
result_images,
html_info_x,
html_info,
]
)
parameters_copypaste.add_paste_fields("extras", extras_image, None)
extras_image.change(
fn=modules.extras.clear_cache,
inputs=[], outputs=[]
)
ui_postprocessing.create_ui()
with gr.Blocks(analytics_enabled=False) as pnginfo_interface:
with gr.Row().style(equal_height=False):
@ -1198,7 +981,11 @@ def create_ui():
html2 = gr.HTML()
with gr.Row():
buttons = parameters_copypaste.create_buttons(["txt2img", "img2img", "inpaint", "extras"])
parameters_copypaste.bind_buttons(buttons, image, generation_info)
for tabname, button in buttons.items():
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
paste_button=button, tabname=tabname, source_text_component=generation_info, source_image_component=image,
))
image.change(
fn=wrap_gradio_call(modules.extras.run_pnginfo),
@ -1607,6 +1394,7 @@ def create_ui():
components = []
component_dict = {}
shared.settings_components = component_dict
script_callbacks.ui_settings_callback()
opts.reorder()
@ -1754,8 +1542,8 @@ def create_ui():
with open(cssfile, "r", encoding="utf8") as file:
css += file.read() + "\n"
if os.path.exists(os.path.join(script_path, "user.css")):
with open(os.path.join(script_path, "user.css"), "r", encoding="utf8") as file:
if os.path.exists(os.path.join(data_path, "user.css")):
with open(os.path.join(data_path, "user.css"), "r", encoding="utf8") as file:
css += file.read() + "\n"
if not cmd_opts.no_progressbar_hiding:
@ -1773,8 +1561,7 @@ def create_ui():
component = create_setting_component(k, is_quicksettings=True)
component_dict[k] = component
parameters_copypaste.integrate_settings_paste_fields(component_dict)
parameters_copypaste.run_bind()
parameters_copypaste.connect_paste_params_buttons()
with gr.Tabs(elem_id="tabs") as tabs:
for interface, label, ifid in interfaces:
@ -1804,6 +1591,14 @@ def create_ui():
outputs=[component, text_settings],
)
button_set_checkpoint = gr.Button('Change checkpoint', elem_id='change_checkpoint', visible=False)
button_set_checkpoint.click(
fn=lambda value, _: run_settings_single(value, key='sd_model_checkpoint'),
_js="function(v){ var res = desiredCheckpointName; desiredCheckpointName = ''; return [res || v, null]; }",
inputs=[component_dict['sd_model_checkpoint'], dummy_component],
outputs=[component_dict['sd_model_checkpoint'], text_settings],
)
component_keys = [k for k in opts.data_labels.keys() if k in component_dict]
def get_settings_values():
@ -1936,16 +1731,16 @@ def create_ui():
def reload_javascript():
head = f'<script type="text/javascript" src="file={os.path.abspath("script.js")}"></script>\n'
head = f'<script type="text/javascript" src="file={os.path.abspath("script.js")}?{os.path.getmtime("script.js")}"></script>\n'
inline = f"{localization.localization_js(shared.opts.localization)};"
if cmd_opts.theme is not None:
inline += f"set_theme('{cmd_opts.theme}');"
head += f'<script type="text/javascript">{inline}</script>\n'
for script in modules.scripts.list_scripts("javascript", ".js"):
head += f'<script type="text/javascript" src="file={script.path}"></script>\n'
head += f'<script type="text/javascript" src="file={script.path}?{os.path.getmtime(script.path)}"></script>\n'
head += f'<script type="text/javascript">{inline}</script>\n'
def template_response(*args, **kwargs):
res = shared.GradioTemplateResponseOriginal(*args, **kwargs)

206
modules/ui_common.py Normal file
View File

@ -0,0 +1,206 @@
import json
import html
import os
import platform
import sys
import gradio as gr
import subprocess as sp
from modules import call_queue, shared
from modules.generation_parameters_copypaste import image_from_url_text
import modules.images
folder_symbol = '\U0001f4c2' # 📂
def update_generation_info(generation_info, html_info, img_index):
try:
generation_info = json.loads(generation_info)
if img_index < 0 or img_index >= len(generation_info["infotexts"]):
return html_info, gr.update()
return plaintext_to_html(generation_info["infotexts"][img_index]), gr.update()
except Exception:
pass
# if the json parse or anything else fails, just return the old html_info
return html_info, gr.update()
def plaintext_to_html(text):
text = "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "</p>"
return text
def save_files(js_data, images, do_make_zip, index):
import csv
filenames = []
fullfns = []
#quick dictionary to class object conversion. Its necessary due apply_filename_pattern requiring it
class MyObject:
def __init__(self, d=None):
if d is not None:
for key, value in d.items():
setattr(self, key, value)
data = json.loads(js_data)
p = MyObject(data)
path = shared.opts.outdir_save
save_to_dirs = shared.opts.use_save_to_dirs_for_ui
extension: str = shared.opts.samples_format
start_index = 0
if index > -1 and shared.opts.save_selected_only and (index >= data["index_of_first_image"]): # ensures we are looking at a specific non-grid picture, and we have save_selected_only
images = [images[index]]
start_index = index
os.makedirs(shared.opts.outdir_save, exist_ok=True)
with open(os.path.join(shared.opts.outdir_save, "log.csv"), "a", encoding="utf8", newline='') as file:
at_start = file.tell() == 0
writer = csv.writer(file)
if at_start:
writer.writerow(["prompt", "seed", "width", "height", "sampler", "cfgs", "steps", "filename", "negative_prompt"])
for image_index, filedata in enumerate(images, start_index):
image = image_from_url_text(filedata)
is_grid = image_index < p.index_of_first_image
i = 0 if is_grid else (image_index - p.index_of_first_image)
fullfn, txt_fullfn = modules.images.save_image(image, path, "", seed=p.all_seeds[i], prompt=p.all_prompts[i], extension=extension, info=p.infotexts[image_index], grid=is_grid, p=p, save_to_dirs=save_to_dirs)
filename = os.path.relpath(fullfn, path)
filenames.append(filename)
fullfns.append(fullfn)
if txt_fullfn:
filenames.append(os.path.basename(txt_fullfn))
fullfns.append(txt_fullfn)
writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler_name"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]])
# Make Zip
if do_make_zip:
zip_filepath = os.path.join(path, "images.zip")
from zipfile import ZipFile
with ZipFile(zip_filepath, "w") as zip_file:
for i in range(len(fullfns)):
with open(fullfns[i], mode="rb") as f:
zip_file.writestr(filenames[i], f.read())
fullfns.insert(0, zip_filepath)
return gr.File.update(value=fullfns, visible=True), plaintext_to_html(f"Saved: {filenames[0]}")
def create_output_panel(tabname, outdir):
from modules import shared
import modules.generation_parameters_copypaste as parameters_copypaste
def open_folder(f):
if not os.path.exists(f):
print(f'Folder "{f}" does not exist. After you create an image, the folder will be created.')
return
elif not os.path.isdir(f):
print(f"""
WARNING
An open_folder request was made with an argument that is not a folder.
This could be an error or a malicious attempt to run code on your computer.
Requested path was: {f}
""", file=sys.stderr)
return
if not shared.cmd_opts.hide_ui_dir_config:
path = os.path.normpath(f)
if platform.system() == "Windows":
os.startfile(path)
elif platform.system() == "Darwin":
sp.Popen(["open", path])
elif "microsoft-standard-WSL2" in platform.uname().release:
sp.Popen(["wsl-open", path])
else:
sp.Popen(["xdg-open", path])
with gr.Column(variant='panel', elem_id=f"{tabname}_results"):
with gr.Group(elem_id=f"{tabname}_gallery_container"):
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery").style(grid=4)
generation_info = None
with gr.Column():
with gr.Row(elem_id=f"image_buttons_{tabname}"):
open_folder_button = gr.Button(folder_symbol, elem_id="hidden_element" if shared.cmd_opts.hide_ui_dir_config else f'open_folder_{tabname}')
if tabname != "extras":
save = gr.Button('Save', elem_id=f'save_{tabname}')
save_zip = gr.Button('Zip', elem_id=f'save_zip_{tabname}')
buttons = parameters_copypaste.create_buttons(["img2img", "inpaint", "extras"])
open_folder_button.click(
fn=lambda: open_folder(shared.opts.outdir_samples or outdir),
inputs=[],
outputs=[],
)
if tabname != "extras":
with gr.Row():
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False, elem_id=f'download_files_{tabname}')
with gr.Group():
html_info = gr.HTML(elem_id=f'html_info_{tabname}')
html_log = gr.HTML(elem_id=f'html_log_{tabname}')
generation_info = gr.Textbox(visible=False, elem_id=f'generation_info_{tabname}')
if tabname == 'txt2img' or tabname == 'img2img':
generation_info_button = gr.Button(visible=False, elem_id=f"{tabname}_generation_info_button")
generation_info_button.click(
fn=update_generation_info,
_js="function(x, y, z){ return [x, y, selected_gallery_index()] }",
inputs=[generation_info, html_info, html_info],
outputs=[html_info, html_info],
)
save.click(
fn=call_queue.wrap_gradio_call(save_files),
_js="(x, y, z, w) => [x, y, false, selected_gallery_index()]",
inputs=[
generation_info,
result_gallery,
html_info,
html_info,
],
outputs=[
download_files,
html_log,
],
show_progress=False,
)
save_zip.click(
fn=call_queue.wrap_gradio_call(save_files),
_js="(x, y, z, w) => [x, y, true, selected_gallery_index()]",
inputs=[
generation_info,
result_gallery,
html_info,
html_info,
],
outputs=[
download_files,
html_log,
]
)
else:
html_info_x = gr.HTML(elem_id=f'html_info_x_{tabname}')
html_info = gr.HTML(elem_id=f'html_info_{tabname}')
html_log = gr.HTML(elem_id=f'html_log_{tabname}')
for paste_tabname, paste_button in buttons.items():
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
paste_button=paste_button, tabname=paste_tabname, source_tabname="txt2img" if tabname == "txt2img" else None, source_image_component=result_gallery
))
return result_gallery, generation_info if tabname != "extras" else html_info_x, html_info, html_log

View File

@ -47,3 +47,12 @@ class FormColorPicker(gr.ColorPicker, gr.components.FormComponent):
def get_block_name(self):
return "colorpicker"
class DropdownMulti(gr.Dropdown):
"""Same as gr.Dropdown but always multiselect"""
def __init__(self, **kwargs):
super().__init__(multiselect=True, **kwargs)
def get_block_name(self):
return "dropdown"

View File

@ -13,7 +13,7 @@ import shutil
import errno
from modules import extensions, shared, paths
from modules.call_queue import wrap_gradio_gpu_call
available_extensions = {"extensions": []}
@ -50,12 +50,17 @@ def apply_and_restart(disable_list, update_list):
shared.state.need_restart = True
def check_updates():
def check_updates(id_task, disable_list):
check_access()
for ext in extensions.extensions:
if ext.remote is None:
continue
disabled = json.loads(disable_list)
assert type(disabled) == list, f"wrong disable_list data for apply_and_restart: {disable_list}"
exts = [ext for ext in extensions.extensions if ext.remote is not None and ext.name not in disabled]
shared.state.job_count = len(exts)
for ext in exts:
shared.state.textinfo = ext.name
try:
ext.check_updates()
@ -63,7 +68,9 @@ def check_updates():
print(f"Error checking updates for {ext.name}:", file=sys.stderr)
print(traceback.format_exc(), file=sys.stderr)
return extension_table()
shared.state.nextjob()
return extension_table(), ""
def extension_table():
@ -132,7 +139,7 @@ def install_extension_from_url(dirname, url):
normalized_url = normalize_git_url(url)
assert len([x for x in extensions.extensions if normalize_git_url(x.remote) == normalized_url]) == 0, 'Extension with this URL is already installed'
tmpdir = os.path.join(paths.script_path, "tmp", dirname)
tmpdir = os.path.join(paths.data_path, "tmp", dirname)
try:
shutil.rmtree(tmpdir, True)
@ -273,12 +280,13 @@ def create_ui():
with gr.Tabs(elem_id="tabs_extensions") as tabs:
with gr.TabItem("Installed"):
with gr.Row():
with gr.Row(elem_id="extensions_installed_top"):
apply = gr.Button(value="Apply and restart UI", variant="primary")
check = gr.Button(value="Check for updates")
extensions_disabled_list = gr.Text(elem_id="extensions_disabled_list", visible=False).style(container=False)
extensions_update_list = gr.Text(elem_id="extensions_update_list", visible=False).style(container=False)
info = gr.HTML()
extensions_table = gr.HTML(lambda: extension_table())
apply.click(
@ -289,10 +297,10 @@ def create_ui():
)
check.click(
fn=check_updates,
fn=wrap_gradio_gpu_call(check_updates, extra_outputs=[gr.update()]),
_js="extensions_check",
inputs=[],
outputs=[extensions_table],
inputs=[info, extensions_disabled_list],
outputs=[extensions_table, info],
)
with gr.TabItem("Available"):

View File

@ -1,18 +1,41 @@
import glob
import os.path
import urllib.parse
from pathlib import Path
from modules import shared
import gradio as gr
import json
import html
from modules.generation_parameters_copypaste import image_from_url_text
extra_pages = []
allowed_dirs = set()
def register_page(page):
"""registers extra networks page for the UI; recommend doing it in on_before_ui() callback for extensions"""
extra_pages.append(page)
allowed_dirs.clear()
allowed_dirs.update(set(sum([x.allowed_directories_for_previews() for x in extra_pages], [])))
def add_pages_to_demo(app):
def fetch_file(filename: str = ""):
from starlette.responses import FileResponse
if not any([Path(x).resolve() in Path(filename).resolve().parents for x in allowed_dirs]):
raise ValueError(f"File cannot be fetched: {filename}. Must be in one of directories registered by extra pages.")
if os.path.splitext(filename)[1].lower() != ".png":
raise ValueError(f"File cannot be fetched: {filename}. Only png.")
# would profit from returning 304
return FileResponse(filename, headers={"Accept-Ranges": "bytes"})
app.add_api_route("/sd_extra_networks/thumb", fetch_file, methods=["GET"])
class ExtraNetworksPage:
@ -25,9 +48,44 @@ class ExtraNetworksPage:
def refresh(self):
pass
def link_preview(self, filename):
return "./sd_extra_networks/thumb?filename=" + urllib.parse.quote(filename.replace('\\', '/')) + "&mtime=" + str(os.path.getmtime(filename))
def search_terms_from_path(self, filename, possible_directories=None):
abspath = os.path.abspath(filename)
for parentdir in (possible_directories if possible_directories is not None else self.allowed_directories_for_previews()):
parentdir = os.path.abspath(parentdir)
if abspath.startswith(parentdir):
return abspath[len(parentdir):].replace('\\', '/')
return ""
def create_html(self, tabname):
view = shared.opts.extra_networks_default_view
items_html = ''
subdirs = {}
for parentdir in [os.path.abspath(x) for x in self.allowed_directories_for_previews()]:
for x in glob.glob(os.path.join(parentdir, '**/*'), recursive=True):
if not os.path.isdir(x):
continue
subdir = os.path.abspath(x)[len(parentdir):].replace("\\", "/")
while subdir.startswith("/"):
subdir = subdir[1:]
subdirs[subdir] = 1
if subdirs:
subdirs = {"": 1, **subdirs}
subdirs_html = "".join([f"""
<button class='gr-button gr-button-lg gr-button-secondary{" search-all" if subdir=="" else ""}' onclick='extraNetworksSearchButton("{tabname}_extra_tabs", event)'>
{html.escape(subdir if subdir!="" else "all")}
</button>
""" for subdir in subdirs])
for item in self.list_items():
items_html += self.create_html_for_item(item, tabname)
@ -36,7 +94,10 @@ class ExtraNetworksPage:
items_html = shared.html("extra-networks-no-cards.html").format(dirs=dirs)
res = f"""
<div id='{tabname}_{self.name}_cards' class='extra-network-cards'>
<div id='{tabname}_{self.name}_subdirs' class='extra-network-subdirs extra-network-subdirs-{view}'>
{subdirs_html}
</div>
<div id='{tabname}_{self.name}_cards' class='extra-network-{view}'>
{items_html}
</div>
"""
@ -52,13 +113,19 @@ class ExtraNetworksPage:
def create_html_for_item(self, item, tabname):
preview = item.get("preview", None)
onclick = item.get("onclick", None)
if onclick is None:
onclick = '"' + html.escape(f"""return cardClicked({json.dumps(tabname)}, {item["prompt"]}, {"true" if self.allow_negative_prompt else "false"})""") + '"'
args = {
"preview_html": "style='background-image: url(" + json.dumps(preview) + ")'" if preview else '',
"prompt": item["prompt"],
"preview_html": "style='background-image: url(\"" + html.escape(preview) + "\")'" if preview else '',
"prompt": item.get("prompt", None),
"tabname": json.dumps(tabname),
"local_preview": json.dumps(item["local_preview"]),
"name": item["name"],
"allow_negative_prompt": "true" if self.allow_negative_prompt else "false",
"card_clicked": onclick,
"save_card_preview": '"' + html.escape(f"""return saveCardPreview(event, {json.dumps(tabname)}, {json.dumps(item["local_preview"])})""") + '"',
"search_term": item.get("search_term", ""),
}
return self.card_page.format(**args)
@ -114,8 +181,13 @@ def create_ui(container, button, tabname):
ui.button_save_preview = gr.Button('Save preview', elem_id=tabname+"_save_preview", visible=False)
ui.preview_target_filename = gr.Textbox('Preview save filename', elem_id=tabname+"_preview_filename", visible=False)
button.click(fn=lambda: gr.update(visible=True), inputs=[], outputs=[container])
button_close.click(fn=lambda: gr.update(visible=False), inputs=[], outputs=[container])
def toggle_visibility(is_visible):
is_visible = not is_visible
return is_visible, gr.update(visible=is_visible)
state_visible = gr.State(value=False)
button.click(fn=toggle_visibility, inputs=[state_visible], outputs=[state_visible, container])
button_close.click(fn=toggle_visibility, inputs=[state_visible], outputs=[state_visible, container])
def refresh():
res = []
@ -135,7 +207,7 @@ def path_is_parent(parent_path, child_path):
parent_path = os.path.abspath(parent_path)
child_path = os.path.abspath(child_path)
return os.path.commonpath([parent_path]) == os.path.commonpath([parent_path, child_path])
return child_path.startswith(parent_path)
def setup_ui(ui, gallery):
@ -165,7 +237,8 @@ def setup_ui(ui, gallery):
ui.button_save_preview.click(
fn=save_preview,
_js="function(x, y, z){console.log(x, y, z); return [selected_gallery_index(), y, z]}",
_js="function(x, y, z){return [selected_gallery_index(), y, z]}",
inputs=[ui.preview_target_filename, gallery, ui.preview_target_filename],
outputs=[*ui.pages]
)

View File

@ -0,0 +1,39 @@
import html
import json
import os
import urllib.parse
from modules import shared, ui_extra_networks, sd_models
class ExtraNetworksPageCheckpoints(ui_extra_networks.ExtraNetworksPage):
def __init__(self):
super().__init__('Checkpoints')
def refresh(self):
shared.refresh_checkpoints()
def list_items(self):
checkpoint: sd_models.CheckpointInfo
for name, checkpoint in sd_models.checkpoints_list.items():
path, ext = os.path.splitext(checkpoint.filename)
previews = [path + ".png", path + ".preview.png"]
preview = None
for file in previews:
if os.path.isfile(file):
preview = self.link_preview(file)
break
yield {
"name": checkpoint.name_for_extra,
"filename": path,
"preview": preview,
"search_term": self.search_terms_from_path(checkpoint.filename) + " " + (checkpoint.sha256 or ""),
"onclick": '"' + html.escape(f"""return selectCheckpoint({json.dumps(name)})""") + '"',
"local_preview": path + ".png",
}
def allowed_directories_for_previews(self):
return [v for v in [shared.cmd_opts.ckpt_dir, sd_models.model_path] if v is not None]

View File

@ -19,13 +19,14 @@ class ExtraNetworksPageHypernetworks(ui_extra_networks.ExtraNetworksPage):
preview = None
for file in previews:
if os.path.isfile(file):
preview = "./file=" + file.replace('\\', '/') + "?mtime=" + str(os.path.getmtime(file))
preview = self.link_preview(file)
break
yield {
"name": name,
"filename": path,
"preview": preview,
"search_term": self.search_terms_from_path(path),
"prompt": json.dumps(f"<hypernet:{name}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
"local_preview": path + ".png",
}

View File

@ -19,12 +19,13 @@ class ExtraNetworksPageTextualInversion(ui_extra_networks.ExtraNetworksPage):
preview = None
if os.path.isfile(preview_file):
preview = "./file=" + preview_file.replace('\\', '/') + "?mtime=" + str(os.path.getmtime(preview_file))
preview = self.link_preview(preview_file)
yield {
"name": embedding.name,
"filename": embedding.filename,
"preview": preview,
"search_term": self.search_terms_from_path(embedding.filename),
"prompt": json.dumps(embedding.name),
"local_preview": path + ".preview.png",
}

View File

@ -0,0 +1,57 @@
import gradio as gr
from modules import scripts_postprocessing, scripts, shared, gfpgan_model, codeformer_model, ui_common, postprocessing, call_queue
import modules.generation_parameters_copypaste as parameters_copypaste
def create_ui():
tab_index = gr.State(value=0)
with gr.Row().style(equal_height=False, variant='compact'):
with gr.Column(variant='compact'):
with gr.Tabs(elem_id="mode_extras"):
with gr.TabItem('Single Image', elem_id="extras_single_tab") as tab_single:
extras_image = gr.Image(label="Source", source="upload", interactive=True, type="pil", elem_id="extras_image")
with gr.TabItem('Batch Process', elem_id="extras_batch_process_tab") as tab_batch:
image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file", elem_id="extras_image_batch")
with gr.TabItem('Batch from Directory', elem_id="extras_batch_directory_tab") as tab_batch_dir:
extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs, placeholder="A directory on the same machine where the server is running.", elem_id="extras_batch_input_dir")
extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, placeholder="Leave blank to save images to the default path.", elem_id="extras_batch_output_dir")
show_extras_results = gr.Checkbox(label='Show result images', value=True, elem_id="extras_show_extras_results")
submit = gr.Button('Generate', elem_id="extras_generate", variant='primary')
script_inputs = scripts.scripts_postproc.setup_ui()
with gr.Column():
result_images, html_info_x, html_info, html_log = ui_common.create_output_panel("extras", shared.opts.outdir_extras_samples)
tab_single.select(fn=lambda: 0, inputs=[], outputs=[tab_index])
tab_batch.select(fn=lambda: 1, inputs=[], outputs=[tab_index])
tab_batch_dir.select(fn=lambda: 2, inputs=[], outputs=[tab_index])
submit.click(
fn=call_queue.wrap_gradio_gpu_call(postprocessing.run_postprocessing, extra_outputs=[None, '']),
inputs=[
tab_index,
extras_image,
image_batch,
extras_batch_input_dir,
extras_batch_output_dir,
show_extras_results,
*script_inputs
],
outputs=[
result_images,
html_info_x,
html_info,
]
)
parameters_copypaste.add_paste_fields("extras", extras_image, None)
extras_image.change(
fn=scripts.scripts_postproc.image_changed,
inputs=[], outputs=[]
)

View File

@ -11,7 +11,6 @@ from modules import modelloader, shared
LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS)
NEAREST = (Image.Resampling.NEAREST if hasattr(Image, 'Resampling') else Image.NEAREST)
from modules.paths import models_path
class Upscaler:
@ -39,7 +38,7 @@ class Upscaler:
self.mod_scale = None
if self.model_path is None and self.name:
self.model_path = os.path.join(models_path, self.name)
self.model_path = os.path.join(shared.models_path, self.name)
if self.model_path and create_dirs:
os.makedirs(self.model_path, exist_ok=True)
@ -143,4 +142,4 @@ class UpscalerNearest(Upscaler):
def __init__(self, dirname=None):
super().__init__(False)
self.name = "Nearest"
self.scalers = [UpscalerData("Nearest", None, self)]
self.scalers = [UpscalerData("Nearest", None, self)]

View File

@ -1,7 +1,6 @@
blendmodes
accelerate
basicsr
fairscale==0.4.4
fonts
font-roboto
gfpgan
@ -17,7 +16,7 @@ pytorch_lightning==1.7.7
realesrgan
scikit-image>=0.19
timm==0.4.12
transformers==4.19.2
transformers==4.25.1
torch
einops
jsonmerge

View File

@ -1,5 +1,5 @@
blendmodes==2022
transformers==4.19.2
transformers==4.25.1
accelerate==0.12.0
basicsr==1.4.2
gfpgan==1.3.8
@ -14,7 +14,6 @@ scikit-image==0.19.2
fonts
font-roboto
timm==0.6.7
fairscale==0.4.9
piexif==1.1.3
einops==0.4.1
jsonmerge==1.8.0

View File

@ -0,0 +1,36 @@
from PIL import Image
import numpy as np
from modules import scripts_postprocessing, codeformer_model
import gradio as gr
from modules.ui_components import FormRow
class ScriptPostprocessingCodeFormer(scripts_postprocessing.ScriptPostprocessing):
name = "CodeFormer"
order = 3000
def ui(self):
with FormRow():
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, elem_id="extras_codeformer_visibility")
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, elem_id="extras_codeformer_weight")
return {
"codeformer_visibility": codeformer_visibility,
"codeformer_weight": codeformer_weight,
}
def process(self, pp: scripts_postprocessing.PostprocessedImage, codeformer_visibility, codeformer_weight):
if codeformer_visibility == 0:
return
restored_img = codeformer_model.codeformer.restore(np.array(pp.image, dtype=np.uint8), w=codeformer_weight)
res = Image.fromarray(restored_img)
if codeformer_visibility < 1.0:
res = Image.blend(pp.image, res, codeformer_visibility)
pp.image = res
pp.info["CodeFormer visibility"] = round(codeformer_visibility, 3)
pp.info["CodeFormer weight"] = round(codeformer_weight, 3)

View File

@ -0,0 +1,33 @@
from PIL import Image
import numpy as np
from modules import scripts_postprocessing, gfpgan_model
import gradio as gr
from modules.ui_components import FormRow
class ScriptPostprocessingGfpGan(scripts_postprocessing.ScriptPostprocessing):
name = "GFPGAN"
order = 2000
def ui(self):
with FormRow():
gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, elem_id="extras_gfpgan_visibility")
return {
"gfpgan_visibility": gfpgan_visibility,
}
def process(self, pp: scripts_postprocessing.PostprocessedImage, gfpgan_visibility):
if gfpgan_visibility == 0:
return
restored_img = gfpgan_model.gfpgan_fix_faces(np.array(pp.image, dtype=np.uint8))
res = Image.fromarray(restored_img)
if gfpgan_visibility < 1.0:
res = Image.blend(pp.image, res, gfpgan_visibility)
pp.image = res
pp.info["GFPGAN visibility"] = round(gfpgan_visibility, 3)

View File

@ -0,0 +1,131 @@
from PIL import Image
import numpy as np
from modules import scripts_postprocessing, shared
import gradio as gr
from modules.ui_components import FormRow
upscale_cache = {}
class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing):
name = "Upscale"
order = 1000
def ui(self):
selected_tab = gr.State(value=0)
with gr.Tabs(elem_id="extras_resize_mode"):
with gr.TabItem('Scale by', elem_id="extras_scale_by_tab") as tab_scale_by:
upscaling_resize = gr.Slider(minimum=1.0, maximum=8.0, step=0.05, label="Resize", value=4, elem_id="extras_upscaling_resize")
with gr.TabItem('Scale to', elem_id="extras_scale_to_tab") as tab_scale_to:
with FormRow():
upscaling_resize_w = gr.Number(label="Width", value=512, precision=0, elem_id="extras_upscaling_resize_w")
upscaling_resize_h = gr.Number(label="Height", value=512, precision=0, elem_id="extras_upscaling_resize_h")
upscaling_crop = gr.Checkbox(label='Crop to fit', value=True, elem_id="extras_upscaling_crop")
with FormRow():
extras_upscaler_1 = gr.Dropdown(label='Upscaler 1', elem_id="extras_upscaler_1", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
with FormRow():
extras_upscaler_2 = gr.Dropdown(label='Upscaler 2', elem_id="extras_upscaler_2", choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
extras_upscaler_2_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Upscaler 2 visibility", value=0.0, elem_id="extras_upscaler_2_visibility")
tab_scale_by.select(fn=lambda: 0, inputs=[], outputs=[selected_tab])
tab_scale_to.select(fn=lambda: 1, inputs=[], outputs=[selected_tab])
return {
"upscale_mode": selected_tab,
"upscale_by": upscaling_resize,
"upscale_to_width": upscaling_resize_w,
"upscale_to_height": upscaling_resize_h,
"upscale_crop": upscaling_crop,
"upscaler_1_name": extras_upscaler_1,
"upscaler_2_name": extras_upscaler_2,
"upscaler_2_visibility": extras_upscaler_2_visibility,
}
def upscale(self, image, info, upscaler, upscale_mode, upscale_by, upscale_to_width, upscale_to_height, upscale_crop):
if upscale_mode == 1:
upscale_by = max(upscale_to_width/image.width, upscale_to_height/image.height)
info["Postprocess upscale to"] = f"{upscale_to_width}x{upscale_to_height}"
else:
info["Postprocess upscale by"] = upscale_by
cache_key = (hash(np.array(image.getdata()).tobytes()), upscaler.name, upscale_mode, upscale_by, upscale_to_width, upscale_to_height, upscale_crop)
cached_image = upscale_cache.pop(cache_key, None)
if cached_image is not None:
image = cached_image
else:
image = upscaler.scaler.upscale(image, upscale_by, upscaler.data_path)
upscale_cache[cache_key] = image
if len(upscale_cache) > shared.opts.upscaling_max_images_in_cache:
upscale_cache.pop(next(iter(upscale_cache), None), None)
if upscale_mode == 1 and upscale_crop:
cropped = Image.new("RGB", (upscale_to_width, upscale_to_height))
cropped.paste(image, box=(upscale_to_width // 2 - image.width // 2, upscale_to_height // 2 - image.height // 2))
image = cropped
info["Postprocess crop to"] = f"{image.width}x{image.height}"
return image
def process(self, pp: scripts_postprocessing.PostprocessedImage, upscale_mode=1, upscale_by=2.0, upscale_to_width=None, upscale_to_height=None, upscale_crop=False, upscaler_1_name=None, upscaler_2_name=None, upscaler_2_visibility=0.0):
if upscaler_1_name == "None":
upscaler_1_name = None
upscaler1 = next(iter([x for x in shared.sd_upscalers if x.name == upscaler_1_name]), None)
assert upscaler1 or (upscaler_1_name is None), f'could not find upscaler named {upscaler_1_name}'
if not upscaler1:
return
if upscaler_2_name == "None":
upscaler_2_name = None
upscaler2 = next(iter([x for x in shared.sd_upscalers if x.name == upscaler_2_name and x.name != "None"]), None)
assert upscaler2 or (upscaler_2_name is None), f'could not find upscaler named {upscaler_2_name}'
upscaled_image = self.upscale(pp.image, pp.info, upscaler1, upscale_mode, upscale_by, upscale_to_width, upscale_to_height, upscale_crop)
pp.info[f"Postprocess upscaler"] = upscaler1.name
if upscaler2 and upscaler_2_visibility > 0:
second_upscale = self.upscale(pp.image, pp.info, upscaler2, upscale_mode, upscale_by, upscale_to_width, upscale_to_height, upscale_crop)
upscaled_image = Image.blend(upscaled_image, second_upscale, upscaler_2_visibility)
pp.info[f"Postprocess upscaler 2"] = upscaler2.name
pp.image = upscaled_image
def image_changed(self):
upscale_cache.clear()
class ScriptPostprocessingUpscaleSimple(ScriptPostprocessingUpscale):
name = "Simple Upscale"
order = 900
def ui(self):
with FormRow():
upscaler_name = gr.Dropdown(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name)
upscale_by = gr.Slider(minimum=0.05, maximum=8.0, step=0.05, label="Upscale by", value=2)
return {
"upscale_by": upscale_by,
"upscaler_name": upscaler_name,
}
def process(self, pp: scripts_postprocessing.PostprocessedImage, upscale_by=2.0, upscaler_name=None):
if upscaler_name is None or upscaler_name == "None":
return
upscaler1 = next(iter([x for x in shared.sd_upscalers if x.name == upscaler_name]), None)
assert upscaler1, f'could not find upscaler named {upscaler_name}'
pp.image = self.upscale(pp.image, pp.info, upscaler1, 0, upscale_by, 0, 0, False)
pp.info[f"Postprocess upscaler"] = upscaler1.name

View File

@ -44,16 +44,40 @@ class Script(scripts.Script):
def title(self):
return "Prompt matrix"
def ui(self, is_img2img):
put_at_start = gr.Checkbox(label='Put variable parts at start of prompt', value=False, elem_id=self.elem_id("put_at_start"))
different_seeds = gr.Checkbox(label='Use different seed for each picture', value=False, elem_id=self.elem_id("different_seeds"))
def ui(self, is_img2img):
gr.HTML('<br />')
with gr.Row():
with gr.Column():
put_at_start = gr.Checkbox(label='Put variable parts at start of prompt',
value=False, elem_id=self.elem_id("put_at_start"))
with gr.Column():
# Radio buttons for selecting the prompt between positive and negative
prompt_type = gr.Radio(["positive", "negative"], label="Select prompt",
elem_id=self.elem_id("prompt_type"), value="positive")
with gr.Row():
with gr.Column():
different_seeds = gr.Checkbox(
label='Use different seed for each picture', value=False, elem_id=self.elem_id("different_seeds"))
with gr.Column():
# Radio buttons for selecting the delimiter to use in the resulting prompt
variations_delimiter = gr.Radio(["comma", "space"], label="Select delimiter", elem_id=self.elem_id(
"variations_delimiter"), value="comma")
return [put_at_start, different_seeds, prompt_type, variations_delimiter]
return [put_at_start, different_seeds]
def run(self, p, put_at_start, different_seeds):
def run(self, p, put_at_start, different_seeds, prompt_type, variations_delimiter):
modules.processing.fix_seed(p)
# Raise error if promp type is not positive or negative
if prompt_type not in ["positive", "negative"]:
raise ValueError(f"Unknown prompt type {prompt_type}")
# Raise error if variations delimiter is not comma or space
if variations_delimiter not in ["comma", "space"]:
raise ValueError(f"Unknown variations delimiter {variations_delimiter}")
original_prompt = p.prompt[0] if type(p.prompt) == list else p.prompt
prompt = p.prompt if prompt_type == "positive" else p.negative_prompt
original_prompt = prompt[0] if type(prompt) == list else prompt
positive_prompt = p.prompt[0] if type(p.prompt) == list else p.prompt
delimiter = ", " if variations_delimiter == "comma" else " "
all_prompts = []
prompt_matrix_parts = original_prompt.split("|")
@ -66,16 +90,19 @@ class Script(scripts.Script):
else:
selected_prompts = [prompt_matrix_parts[0]] + selected_prompts
all_prompts.append(", ".join(selected_prompts))
all_prompts.append(delimiter.join(selected_prompts))
p.n_iter = math.ceil(len(all_prompts) / p.batch_size)
p.do_not_save_grid = True
print(f"Prompt matrix will create {len(all_prompts)} images using a total of {p.n_iter} batches.")
p.prompt = all_prompts
if prompt_type == "positive":
p.prompt = all_prompts
else:
p.negative_prompt = all_prompts
p.seed = [p.seed + (i if different_seeds else 0) for i in range(len(all_prompts))]
p.prompt_for_display = original_prompt
p.prompt_for_display = positive_prompt
processed = process_images(p)
grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2))

View File

@ -123,7 +123,7 @@ def apply_vae(p, x, xs):
def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _):
p.styles = x.split(',')
p.styles.extend(x.split(','))
def format_value_add_label(p, opt, x):
@ -184,6 +184,7 @@ axis_options = [
AxisOption("Var. seed", int, apply_field("subseed")),
AxisOption("Var. strength", float, apply_field("subseed_strength")),
AxisOption("Steps", int, apply_field("steps")),
AxisOptionTxt2Img("Hires steps", int, apply_field("hr_second_pass_steps")),
AxisOption("CFG Scale", float, apply_field("cfg_scale")),
AxisOption("Prompt S/R", str, apply_prompt, format_value=format_value),
AxisOption("Prompt order", str_permutations, apply_order, format_value=format_value_join_list),
@ -204,26 +205,30 @@ axis_options = [
]
def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend, include_lone_images, swap_axes_processing_order):
ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend, include_lone_images, include_sub_grids, first_axes_processed, second_axes_processed):
hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
title_texts = [[images.GridAnnotation(z)] for z in z_labels]
# Temporary list of all the images that are generated to be populated into the grid.
# Will be filled with empty images for any individual step that fails to process properly
image_cache = [None] * (len(xs) * len(ys))
image_cache = [None] * (len(xs) * len(ys) * len(zs))
processed_result = None
cell_mode = "P"
cell_size = (1, 1)
state.job_count = len(xs) * len(ys) * p.n_iter
state.job_count = len(xs) * len(ys) * len(zs) * p.n_iter
def process_cell(x, y, ix, iy):
def process_cell(x, y, z, ix, iy, iz):
nonlocal image_cache, processed_result, cell_mode, cell_size
state.job = f"{ix + iy * len(xs) + 1} out of {len(xs) * len(ys)}"
def index(ix, iy, iz):
return ix + iy * len(xs) + iz * len(xs) * len(ys)
processed: Processed = cell(x, y)
state.job = f"{index(ix, iy, iz) + 1} out of {len(xs) * len(ys) * len(zs)}"
processed: Processed = cell(x, y, z)
try:
# this dereference will throw an exception if the image was not processed
@ -237,35 +242,68 @@ def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend, include_lone_
cell_size = processed_image.size
processed_result.images = [Image.new(cell_mode, cell_size)]
image_cache[ix + iy * len(xs)] = processed_image
image_cache[index(ix, iy, iz)] = processed_image
if include_lone_images:
processed_result.images.append(processed_image)
processed_result.all_prompts.append(processed.prompt)
processed_result.all_seeds.append(processed.seed)
processed_result.infotexts.append(processed.infotexts[0])
except:
image_cache[ix + iy * len(xs)] = Image.new(cell_mode, cell_size)
image_cache[index(ix, iy, iz)] = Image.new(cell_mode, cell_size)
if swap_axes_processing_order:
if first_axes_processed == 'x':
for ix, x in enumerate(xs):
for iy, y in enumerate(ys):
process_cell(x, y, ix, iy)
else:
if second_axes_processed == 'y':
for iy, y in enumerate(ys):
for iz, z in enumerate(zs):
process_cell(x, y, z, ix, iy, iz)
else:
for iz, z in enumerate(zs):
for iy, y in enumerate(ys):
process_cell(x, y, z, ix, iy, iz)
elif first_axes_processed == 'y':
for iy, y in enumerate(ys):
for ix, x in enumerate(xs):
process_cell(x, y, ix, iy)
if second_axes_processed == 'x':
for ix, x in enumerate(xs):
for iz, z in enumerate(zs):
process_cell(x, y, z, ix, iy, iz)
else:
for iz, z in enumerate(zs):
for ix, x in enumerate(xs):
process_cell(x, y, z, ix, iy, iz)
elif first_axes_processed == 'z':
for iz, z in enumerate(zs):
if second_axes_processed == 'x':
for ix, x in enumerate(xs):
for iy, y in enumerate(ys):
process_cell(x, y, z, ix, iy, iz)
else:
for iy, y in enumerate(ys):
for ix, x in enumerate(xs):
process_cell(x, y, z, ix, iy, iz)
if not processed_result:
print("Unexpected error: draw_xy_grid failed to return even a single processed image")
print("Unexpected error: draw_xyz_grid failed to return even a single processed image")
return Processed(p, [])
grid = images.image_grid(image_cache, rows=len(ys))
sub_grids = [None] * len(zs)
for i in range(len(zs)):
start_index = i * len(xs) * len(ys)
end_index = start_index + len(xs) * len(ys)
grid = images.image_grid(image_cache[start_index:end_index], rows=len(ys))
if draw_legend:
grid = images.draw_grid_annotations(grid, cell_size[0], cell_size[1], hor_texts, ver_texts)
sub_grids[i] = grid
if include_sub_grids and len(zs) > 1:
processed_result.images.insert(i+1, grid)
sub_grid_size = sub_grids[0].size
z_grid = images.image_grid(sub_grids, rows=1)
if draw_legend:
grid = images.draw_grid_annotations(grid, cell_size[0], cell_size[1], hor_texts, ver_texts)
z_grid = images.draw_grid_annotations(z_grid, sub_grid_size[0], sub_grid_size[1], title_texts, [[images.GridAnnotation()]])
processed_result.images[0] = z_grid
processed_result.images[0] = grid
return processed_result
return processed_result, sub_grids
class SharedSettingsStackHelper(object):
@ -290,7 +328,7 @@ re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+
class Script(scripts.Script):
def title(self):
return "X/Y plot"
return "X/Y/Z plot"
def ui(self, is_img2img):
self.current_axis_options = [x for x in axis_options if type(x) == AxisOption or x.is_img2img == is_img2img]
@ -300,24 +338,36 @@ class Script(scripts.Script):
with gr.Row():
x_type = gr.Dropdown(label="X type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[1].label, type="index", elem_id=self.elem_id("x_type"))
x_values = gr.Textbox(label="X values", lines=1, elem_id=self.elem_id("x_values"))
fill_x_button = ToolButton(value=fill_values_symbol, elem_id="xy_grid_fill_x_tool_button", visible=False)
fill_x_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_x_tool_button", visible=False)
with gr.Row():
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("y_type"))
y_values = gr.Textbox(label="Y values", lines=1, elem_id=self.elem_id("y_values"))
fill_y_button = ToolButton(value=fill_values_symbol, elem_id="xy_grid_fill_y_tool_button", visible=False)
fill_y_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_y_tool_button", visible=False)
with gr.Row(variant="compact"):
with gr.Row():
z_type = gr.Dropdown(label="Z type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("z_type"))
z_values = gr.Textbox(label="Z values", lines=1, elem_id=self.elem_id("z_values"))
fill_z_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_z_tool_button", visible=False)
with gr.Row(variant="compact", elem_id="axis_options"):
draw_legend = gr.Checkbox(label='Draw legend', value=True, elem_id=self.elem_id("draw_legend"))
include_lone_images = gr.Checkbox(label='Include Separate Images', value=False, elem_id=self.elem_id("include_lone_images"))
include_lone_images = gr.Checkbox(label='Include Sub Images', value=False, elem_id=self.elem_id("include_lone_images"))
include_sub_grids = gr.Checkbox(label='Include Sub Grids', value=False, elem_id=self.elem_id("include_sub_grids"))
no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False, elem_id=self.elem_id("no_fixed_seeds"))
swap_axes_button = gr.Button(value="Swap axes", elem_id="xy_grid_swap_axes_button")
swap_xy_axes_button = gr.Button(value="Swap X/Y axes", elem_id="xy_grid_swap_axes_button")
swap_yz_axes_button = gr.Button(value="Swap Y/Z axes", elem_id="yz_grid_swap_axes_button")
swap_xz_axes_button = gr.Button(value="Swap X/Z axes", elem_id="xz_grid_swap_axes_button")
def swap_axes(x_type, x_values, y_type, y_values):
return self.current_axis_options[y_type].label, y_values, self.current_axis_options[x_type].label, x_values
def swap_axes(axis1_type, axis1_values, axis2_type, axis2_values):
return self.current_axis_options[axis2_type].label, axis2_values, self.current_axis_options[axis1_type].label, axis1_values
swap_args = [x_type, x_values, y_type, y_values]
swap_axes_button.click(swap_axes, inputs=swap_args, outputs=swap_args)
xy_swap_args = [x_type, x_values, y_type, y_values]
swap_xy_axes_button.click(swap_axes, inputs=xy_swap_args, outputs=xy_swap_args)
yz_swap_args = [y_type, y_values, z_type, z_values]
swap_yz_axes_button.click(swap_axes, inputs=yz_swap_args, outputs=yz_swap_args)
xz_swap_args = [x_type, x_values, z_type, z_values]
swap_xz_axes_button.click(swap_axes, inputs=xz_swap_args, outputs=xz_swap_args)
def fill(x_type):
axis = self.current_axis_options[x_type]
@ -325,16 +375,27 @@ class Script(scripts.Script):
fill_x_button.click(fn=fill, inputs=[x_type], outputs=[x_values])
fill_y_button.click(fn=fill, inputs=[y_type], outputs=[y_values])
fill_z_button.click(fn=fill, inputs=[z_type], outputs=[z_values])
def select_axis(x_type):
return gr.Button.update(visible=self.current_axis_options[x_type].choices is not None)
x_type.change(fn=select_axis, inputs=[x_type], outputs=[fill_x_button])
y_type.change(fn=select_axis, inputs=[y_type], outputs=[fill_y_button])
z_type.change(fn=select_axis, inputs=[z_type], outputs=[fill_z_button])
return [x_type, x_values, y_type, y_values, draw_legend, include_lone_images, no_fixed_seeds]
self.infotext_fields = (
(x_type, "X Type"),
(x_values, "X Values"),
(y_type, "Y Type"),
(y_values, "Y Values"),
(z_type, "Z Type"),
(z_values, "Z Values"),
)
def run(self, p, x_type, x_values, y_type, y_values, draw_legend, include_lone_images, no_fixed_seeds):
return [x_type, x_values, y_type, y_values, z_type, z_values, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds]
def run(self, p, x_type, x_values, y_type, y_values, z_type, z_values, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds):
if not no_fixed_seeds:
modules.processing.fix_seed(p)
@ -408,6 +469,9 @@ class Script(scripts.Script):
y_opt = self.current_axis_options[y_type]
ys = process_axis(y_opt, y_values)
z_opt = self.current_axis_options[z_type]
zs = process_axis(z_opt, z_values)
def fix_axis_seeds(axis_opt, axis_list):
if axis_opt.label in ['Seed', 'Var. seed']:
return [int(random.randrange(4294967294)) if val is None or val == '' or val == -1 else val for val in axis_list]
@ -417,39 +481,78 @@ class Script(scripts.Script):
if not no_fixed_seeds:
xs = fix_axis_seeds(x_opt, xs)
ys = fix_axis_seeds(y_opt, ys)
zs = fix_axis_seeds(z_opt, zs)
if x_opt.label == 'Steps':
total_steps = sum(xs) * len(ys)
total_steps = sum(xs) * len(ys) * len(zs)
elif y_opt.label == 'Steps':
total_steps = sum(ys) * len(xs)
total_steps = sum(ys) * len(xs) * len(zs)
elif z_opt.label == 'Steps':
total_steps = sum(zs) * len(xs) * len(ys)
else:
total_steps = p.steps * len(xs) * len(ys)
total_steps = p.steps * len(xs) * len(ys) * len(zs)
if isinstance(p, StableDiffusionProcessingTxt2Img) and p.enable_hr:
total_steps *= 2
if x_opt.label == "Hires steps":
total_steps += sum(xs) * len(ys) * len(zs)
elif y_opt.label == "Hires steps":
total_steps += sum(ys) * len(xs) * len(zs)
elif z_opt.label == "Hires steps":
total_steps += sum(zs) * len(xs) * len(ys)
elif p.hr_second_pass_steps:
total_steps += p.hr_second_pass_steps * len(xs) * len(ys) * len(zs)
else:
total_steps *= 2
print(f"X/Y plot will create {len(xs) * len(ys) * p.n_iter} images on a {len(xs)}x{len(ys)} grid. (Total steps to process: {total_steps * p.n_iter})")
shared.total_tqdm.updateTotal(total_steps * p.n_iter)
total_steps *= p.n_iter
image_cell_count = p.n_iter * p.batch_size
cell_console_text = f"; {image_cell_count} images per cell" if image_cell_count > 1 else ""
plural_s = 's' if len(zs) > 1 else ''
print(f"X/Y/Z plot will create {len(xs) * len(ys) * len(zs) * image_cell_count} images on {len(zs)} {len(xs)}x{len(ys)} grid{plural_s}{cell_console_text}. (Total steps to process: {total_steps})")
shared.total_tqdm.updateTotal(total_steps)
grid_infotext = [None]
# If one of the axes is very slow to change between (like SD model
# checkpoint), then make sure it is in the outer iteration of the nested
# `for` loop.
swap_axes_processing_order = x_opt.cost > y_opt.cost
first_axes_processed = 'x'
second_axes_processed = 'y'
if x_opt.cost > y_opt.cost and x_opt.cost > z_opt.cost:
first_axes_processed = 'x'
if y_opt.cost > z_opt.cost:
second_axes_processed = 'y'
else:
second_axes_processed = 'z'
elif y_opt.cost > x_opt.cost and y_opt.cost > z_opt.cost:
first_axes_processed = 'y'
if x_opt.cost > z_opt.cost:
second_axes_processed = 'x'
else:
second_axes_processed = 'z'
elif z_opt.cost > x_opt.cost and z_opt.cost > y_opt.cost:
first_axes_processed = 'z'
if x_opt.cost > y_opt.cost:
second_axes_processed = 'x'
else:
second_axes_processed = 'y'
def cell(x, y):
def cell(x, y, z):
if shared.state.interrupted:
return Processed(p, [], p.seed, "")
pc = copy(p)
pc.styles = pc.styles[:]
x_opt.apply(pc, x, xs)
y_opt.apply(pc, y, ys)
z_opt.apply(pc, z, zs)
res = process_images(pc)
if grid_infotext[0] is None:
pc.extra_generation_params = copy(pc.extra_generation_params)
pc.extra_generation_params['Script'] = self.title()
if x_opt.label != 'Nothing':
pc.extra_generation_params["X Type"] = x_opt.label
@ -463,24 +566,38 @@ class Script(scripts.Script):
if y_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
pc.extra_generation_params["Fixed Y Values"] = ", ".join([str(y) for y in ys])
if z_opt.label != 'Nothing':
pc.extra_generation_params["Z Type"] = z_opt.label
pc.extra_generation_params["Z Values"] = z_values
if z_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
pc.extra_generation_params["Fixed Z Values"] = ", ".join([str(z) for z in zs])
grid_infotext[0] = processing.create_infotext(pc, pc.all_prompts, pc.all_seeds, pc.all_subseeds)
return res
with SharedSettingsStackHelper():
processed = draw_xy_grid(
processed, sub_grids = draw_xyz_grid(
p,
xs=xs,
ys=ys,
zs=zs,
x_labels=[x_opt.format_value(p, x_opt, x) for x in xs],
y_labels=[y_opt.format_value(p, y_opt, y) for y in ys],
z_labels=[z_opt.format_value(p, z_opt, z) for z in zs],
cell=cell,
draw_legend=draw_legend,
include_lone_images=include_lone_images,
swap_axes_processing_order=swap_axes_processing_order
include_sub_grids=include_sub_grids,
first_axes_processed=first_axes_processed,
second_axes_processed=second_axes_processed
)
if opts.grid_save and len(sub_grids) > 1:
for sub_grid in sub_grids:
images.save_image(sub_grid, p.outpath_grids, "xyz_grid", info=grid_infotext[0], extension=opts.grid_format, prompt=p.prompt, seed=processed.seed, grid=True, p=p)
if opts.grid_save:
images.save_image(processed.images[0], p.outpath_grids, "xy_grid", info=grid_infotext[0], extension=opts.grid_format, prompt=p.prompt, seed=processed.seed, grid=True, p=p)
images.save_image(processed.images[0], p.outpath_grids, "xyz_grid", info=grid_infotext[0], extension=opts.grid_format, prompt=p.prompt, seed=processed.seed, grid=True, p=p)
return processed

124
style.css
View File

@ -74,7 +74,12 @@
#txt2img_gallery img, #img2img_gallery img{
object-fit: scale-down;
}
#txt2img_actions_column, #img2img_actions_column {
margin: 0.35rem 0.75rem 0.35rem 0;
}
#script_list {
padding: .625rem .75rem 0 .625rem;
}
.justify-center.overflow-x-scroll {
justify-content: left;
}
@ -126,6 +131,7 @@
#txt2img_actions_column, #img2img_actions_column{
gap: 0;
margin-right: .75rem;
}
#txt2img_tools, #img2img_tools{
@ -150,6 +156,7 @@
#txt2img_styles_row, #img2img_styles_row{
gap: 0.25em;
margin-top: 0.3em;
}
#txt2img_styles_row > button, #img2img_styles_row > button{
@ -164,7 +171,7 @@
min-height: 3.2em;
}
#txt2img_styles ul, #img2img_styles ul{
ul.list-none{
max-height: 35em;
z-index: 2000;
}
@ -311,11 +318,11 @@ input[type="range"]{
.min-h-\[6rem\] { min-height: unset !important; }
.progressDiv{
position: absolute;
position: relative;
height: 20px;
top: -20px;
background: #b4c0cc;
border-radius: 3px !important;
margin-bottom: -3px;
}
.dark .progressDiv{
@ -535,7 +542,7 @@ input[type="range"]{
}
#quicksettings {
gap: 0.4em;
width: fit-content;
}
#quicksettings > div, #quicksettings > fieldset{
@ -545,6 +552,7 @@ input[type="range"]{
border: none;
box-shadow: none;
background: none;
margin-right: 10px;
}
#quicksettings > div > div > div > label > span {
@ -567,7 +575,7 @@ canvas[key="mask"] {
right: 0.5em;
top: -0.6em;
z-index: 400;
width: 8em;
width: 6em;
}
#quicksettings .gr-box > div > div > input.gr-text-input {
top: -1.12em;
@ -589,7 +597,7 @@ canvas[key="mask"] {
/* Extensions */
#tab_extensions table``{
#tab_extensions table{
border-collapse: collapse;
}
@ -665,11 +673,27 @@ canvas[key="mask"] {
#quicksettings .gr-button-tool{
margin: 0;
border-color: unset;
background-color: unset;
}
#modelmerger_interp_description>p {
margin: 0!important;
text-align: center;
}
#modelmerger_interp_description {
margin: 0.35rem 0.75rem 1.23rem;
}
#img2img_settings > div.gr-form, #txt2img_settings > div.gr-form {
padding-top: 0.9em;
padding-bottom: 0.9em;
}
#txt2img_settings {
padding-top: 1.16em;
padding-bottom: 0.9em;
}
#img2img_settings {
padding-bottom: 0.9em;
}
#img2img_settings div.gr-form .gr-form, #txt2img_settings div.gr-form .gr-form, #train_tabs div.gr-form .gr-form{
@ -714,8 +738,13 @@ footer {
white-space: nowrap;
min-width: auto;
}
#txt2img_hires_fix{
margin-left: -0.8em;
#img2img_copy_to_img2img, #img2img_copy_to_sketch, #img2img_copy_to_inpaint, #img2img_copy_to_inpaint_sketch{
margin-left: 0em;
}
#axis_options {
margin-left: 0em;
}
.inactive{
@ -736,7 +765,7 @@ footer {
.dark .gr-compact{
background-color: rgb(31 41 55 / var(--tw-bg-opacity));
margin-left: 0.8em;
margin-left: 0;
}
.gr-compact{
@ -778,27 +807,91 @@ footer {
margin: 0.3em;
}
.extra-network-subdirs{
padding: 0.2em 0.35em;
}
.extra-network-subdirs button{
margin: 0 0.15em;
}
#txt2img_extra_networks .search, #img2img_extra_networks .search{
display: inline-block;
max-width: 16em;
margin: 0.3em;
align-self: center;
}
.extra-network-cards .nocards{
#txt2img_extra_view, #img2img_extra_view {
width: auto;
}
.extra-network-cards .nocards, .extra-network-thumbs .nocards{
margin: 1.25em 0.5em 0.5em 0.5em;
}
.extra-network-cards .nocards h1{
.extra-network-cards .nocards h1, .extra-network-thumbs .nocards h1{
font-size: 1.5em;
margin-bottom: 1em;
}
.extra-network-cards .nocards li{
.extra-network-cards .nocards li, .extra-network-thumbs .nocards li{
margin-left: 0.5em;
}
.extra-network-thumbs {
display: flex;
flex-flow: row wrap;
gap: 10px;
}
.extra-network-thumbs .card {
height: 6em;
width: 6em;
cursor: pointer;
background-image: url('./file=html/card-no-preview.png');
background-size: cover;
background-position: center center;
position: relative;
}
.extra-network-thumbs .card:hover .additional a {
display: block;
}
.extra-network-thumbs .actions .additional a {
background-image: url('./file=html/image-update.svg');
background-repeat: no-repeat;
background-size: cover;
background-position: center center;
position: absolute;
top: 0;
left: 0;
width: 24px;
height: 24px;
display: none;
font-size: 0;
text-align: -9999;
}
.extra-network-thumbs .actions .name {
position: absolute;
bottom: 0;
font-size: 10px;
padding: 3px;
width: 100%;
overflow: hidden;
white-space: nowrap;
text-overflow: ellipsis;
background: rgba(0,0,0,.5);
color: white;
}
.extra-network-thumbs .card:hover .actions .name {
white-space: normal;
word-break: break-all;
}
.extra-network-cards .card{
display: inline-block;
margin: 0.5em;
@ -863,3 +956,6 @@ footer {
color: red;
}
[id*='_prompt_container'] > div {
margin: 0!important;
}

View File

@ -10,7 +10,7 @@ then
fi
export install_dir="$HOME"
export COMMANDLINE_ARGS="--skip-torch-cuda-test --no-half --use-cpu interrogate"
export COMMANDLINE_ARGS="--skip-torch-cuda-test --upcast-sampling --no-half-vae --use-cpu interrogate"
export TORCH_COMMAND="pip install torch==1.12.1 torchvision==0.13.1"
export K_DIFFUSION_REPO="https://github.com/brkirch/k-diffusion.git"
export K_DIFFUSION_COMMIT_HASH="51c9778f269cedb55a4d88c79c0246d35bdadb71"

View File

@ -1,6 +1,5 @@
import os
import sys
import threading
import time
import importlib
import signal
@ -8,11 +7,14 @@ import re
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
from fastapi.middleware.gzip import GZipMiddleware
from packaging import version
from modules import import_hook, errors, extra_networks
import logging
logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
from modules import import_hook, errors, extra_networks, ui_extra_networks_checkpoints
from modules import extra_networks_hypernet, ui_extra_networks_hypernets, ui_extra_networks_textual_inversion
from modules.call_queue import wrap_queued_call, queue_lock, wrap_gradio_gpu_call
from modules.paths import script_path
import torch
@ -22,7 +24,6 @@ if ".dev" in torch.__version__ or "+git" in torch.__version__:
from modules import shared, devices, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks
import modules.codeformer_model as codeformer
import modules.extras
import modules.face_restoration
import modules.gfpgan_model as gfpgan
import modules.img2img
@ -50,7 +51,40 @@ else:
server_name = "0.0.0.0" if cmd_opts.listen else None
def check_versions():
if shared.cmd_opts.skip_version_check:
return
expected_torch_version = "1.13.1"
if version.parse(torch.__version__) < version.parse(expected_torch_version):
errors.print_error_explanation(f"""
You are running torch {torch.__version__}.
The program is tested to work with torch {expected_torch_version}.
To reinstall the desired version, run with commandline flag --reinstall-torch.
Beware that this will cause a lot of large files to be downloaded, as well as
there are reports of issues with training tab on the latest version.
Use --skip-version-check commandline argument to disable this check.
""".strip())
expected_xformers_version = "0.0.16rc425"
if shared.xformers_available:
import xformers
if version.parse(xformers.__version__) < version.parse(expected_xformers_version):
errors.print_error_explanation(f"""
You are running xformers {xformers.__version__}.
The program is tested to work with xformers {expected_xformers_version}.
To reinstall the desired version, run with commandline flag --reinstall-xformers.
Use --skip-version-check commandline argument to disable this check.
""".strip())
def initialize():
check_versions()
extensions.list_extensions()
localization.list_localizations(cmd_opts.localizations_dir)
@ -93,6 +127,7 @@ def initialize():
ui_extra_networks.intialize()
ui_extra_networks.register_page(ui_extra_networks_textual_inversion.ExtraNetworksPageTextualInversion())
ui_extra_networks.register_page(ui_extra_networks_hypernets.ExtraNetworksPageHypernetworks())
ui_extra_networks.register_page(ui_extra_networks_checkpoints.ExtraNetworksPageCheckpoints())
extra_networks.initialize()
extra_networks.register_extra_network(extra_networks_hypernet.ExtraNetworkHypernet())
@ -201,6 +236,8 @@ def webui():
if launch_api:
create_api(app)
ui_extra_networks.add_pages_to_demo(app)
modules.script_callbacks.app_started_callback(shared.demo, app)
wait_on_server(shared.demo)
@ -228,6 +265,7 @@ def webui():
ui_extra_networks.intialize()
ui_extra_networks.register_page(ui_extra_networks_textual_inversion.ExtraNetworksPageTextualInversion())
ui_extra_networks.register_page(ui_extra_networks_hypernets.ExtraNetworksPageHypernetworks())
ui_extra_networks.register_page(ui_extra_networks_checkpoints.ExtraNetworksPageCheckpoints())
extra_networks.initialize()
extra_networks.register_extra_network(extra_networks_hypernet.ExtraNetworkHypernet())