Merge pull request #1755 from AUTOMATIC1111/use-typing-list
use typing.list in prompt_parser.py for wider python version support
This commit is contained in:
commit
0e92c36707
|
@ -1,6 +1,6 @@
|
||||||
import re
|
import re
|
||||||
from collections import namedtuple
|
from collections import namedtuple
|
||||||
|
from typing import List
|
||||||
import lark
|
import lark
|
||||||
|
|
||||||
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
|
# a prompt like this: "fantasy landscape with a [mountain:lake:0.25] and [an oak:a christmas tree:0.75][ in foreground::0.6][ in background:0.25] [shoddy:masterful:0.5]"
|
||||||
|
@ -175,15 +175,14 @@ def get_multicond_prompt_list(prompts):
|
||||||
|
|
||||||
class ComposableScheduledPromptConditioning:
|
class ComposableScheduledPromptConditioning:
|
||||||
def __init__(self, schedules, weight=1.0):
|
def __init__(self, schedules, weight=1.0):
|
||||||
self.schedules = schedules # : list[ScheduledPromptConditioning]
|
self.schedules: List[ScheduledPromptConditioning] = schedules
|
||||||
self.weight: float = weight
|
self.weight: float = weight
|
||||||
|
|
||||||
|
|
||||||
class MulticondLearnedConditioning:
|
class MulticondLearnedConditioning:
|
||||||
def __init__(self, shape, batch):
|
def __init__(self, shape, batch):
|
||||||
self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS
|
self.shape: tuple = shape # the shape field is needed to send this object to DDIM/PLMS
|
||||||
self.batch = batch # : list[list[ComposableScheduledPromptConditioning]]
|
self.batch: List[List[ComposableScheduledPromptConditioning]] = batch
|
||||||
|
|
||||||
|
|
||||||
def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
|
def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearnedConditioning:
|
||||||
"""same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt.
|
"""same as get_learned_conditioning, but returns a list of ScheduledPromptConditioning along with the weight objects for each prompt.
|
||||||
|
@ -203,7 +202,7 @@ def get_multicond_learned_conditioning(model, prompts, steps) -> MulticondLearne
|
||||||
return MulticondLearnedConditioning(shape=(len(prompts),), batch=res)
|
return MulticondLearnedConditioning(shape=(len(prompts),), batch=res)
|
||||||
|
|
||||||
|
|
||||||
def reconstruct_cond_batch(c, current_step): # c: list[list[ScheduledPromptConditioning]]
|
def reconstruct_cond_batch(c: List[List[ScheduledPromptConditioning]], current_step):
|
||||||
param = c[0][0].cond
|
param = c[0][0].cond
|
||||||
res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
|
res = torch.zeros((len(c),) + param.shape, device=param.device, dtype=param.dtype)
|
||||||
for i, cond_schedule in enumerate(c):
|
for i, cond_schedule in enumerate(c):
|
||||||
|
|
Loading…
Reference in New Issue
Block a user