diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 905cbeef..893ba110 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -36,14 +36,14 @@ class HypernetworkModule(torch.nn.Module): linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1]))) # if skip_first_layer because first parameters potentially contain negative values # if i < 1: continue + if add_layer_norm: + linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) if activation_func in HypernetworkModule.activation_dict: linears.append(HypernetworkModule.activation_dict[activation_func]()) else: print("Invalid key {} encountered as activation function!".format(activation_func)) # if use_dropout: # linears.append(torch.nn.Dropout(p=0.3)) - if add_layer_norm: - linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) self.linear = torch.nn.Sequential(*linears) @@ -115,11 +115,24 @@ class Hypernetwork: for k, layers in self.layers.items(): for layer in layers: - layer.train() res += layer.trainables() return res + def eval(self): + for k, layers in self.layers.items(): + for layer in layers: + layer.eval() + for items in self.weights(): + items.requires_grad = False + + def train(self): + for k, layers in self.layers.items(): + for layer in layers: + layer.train() + for items in self.weights(): + items.requires_grad = True + def save(self, filename): state_dict = {} @@ -290,10 +303,6 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log shared.sd_model.first_stage_model.to(devices.cpu) hypernetwork = shared.loaded_hypernetwork - weights = hypernetwork.weights() - for weight in weights: - weight.requires_grad = True - losses = torch.zeros((32,)) last_saved_file = "" @@ -304,10 +313,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log return hypernetwork, filename scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) - # if optimizer == "AdamW": or else Adam / AdamW / SGD, etc... - optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate) + optimizer = torch.optim.AdamW(hypernetwork.weights(), lr=scheduler.learn_rate) pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) + hypernetwork.train() for i, entries in pbar: hypernetwork.step = i + ititial_step @@ -328,8 +337,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log losses[hypernetwork.step % losses.shape[0]] = loss.item() - optimizer.zero_grad() + optimizer.zero_grad(set_to_none=True) loss.backward() + del loss optimizer.step() mean_loss = losses.mean() if torch.isnan(mean_loss): @@ -346,44 +356,47 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log }) if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0: + torch.cuda.empty_cache() last_saved_image = os.path.join(images_dir, f'{hypernetwork_name}-{hypernetwork.step}.png') + with torch.no_grad(): + hypernetwork.eval() + shared.sd_model.cond_stage_model.to(devices.device) + shared.sd_model.first_stage_model.to(devices.device) - optimizer.zero_grad() - shared.sd_model.cond_stage_model.to(devices.device) - shared.sd_model.first_stage_model.to(devices.device) + p = processing.StableDiffusionProcessingTxt2Img( + sd_model=shared.sd_model, + do_not_save_grid=True, + do_not_save_samples=True, + ) - p = processing.StableDiffusionProcessingTxt2Img( - sd_model=shared.sd_model, - do_not_save_grid=True, - do_not_save_samples=True, - ) + if preview_from_txt2img: + p.prompt = preview_prompt + p.negative_prompt = preview_negative_prompt + p.steps = preview_steps + p.sampler_index = preview_sampler_index + p.cfg_scale = preview_cfg_scale + p.seed = preview_seed + p.width = preview_width + p.height = preview_height + else: + p.prompt = entries[0].cond_text + p.steps = 20 - if preview_from_txt2img: - p.prompt = preview_prompt - p.negative_prompt = preview_negative_prompt - p.steps = preview_steps - p.sampler_index = preview_sampler_index - p.cfg_scale = preview_cfg_scale - p.seed = preview_seed - p.width = preview_width - p.height = preview_height - else: - p.prompt = entries[0].cond_text - p.steps = 20 + preview_text = p.prompt - preview_text = p.prompt + processed = processing.process_images(p) + image = processed.images[0] if len(processed.images)>0 else None - processed = processing.process_images(p) - image = processed.images[0] if len(processed.images)>0 else None + if unload: + shared.sd_model.cond_stage_model.to(devices.cpu) + shared.sd_model.first_stage_model.to(devices.cpu) - if unload: - shared.sd_model.cond_stage_model.to(devices.cpu) - shared.sd_model.first_stage_model.to(devices.cpu) + if image is not None: + shared.state.current_image = image + image.save(last_saved_image) + last_saved_image += f", prompt: {preview_text}" - if image is not None: - shared.state.current_image = image - image.save(last_saved_image) - last_saved_image += f", prompt: {preview_text}" + hypernetwork.train() shared.state.job_no = hypernetwork.step