From ab27c111d06ec920791c73eea25ad9a61671852e Mon Sep 17 00:00:00 2001
From: Muhammad Rizqi Nur
Date: Sat, 29 Oct 2022 18:09:17 +0700
Subject: [PATCH 1/6] Add input validations before loading dataset for training
---
modules/hypernetworks/hypernetwork.py | 38 ++++++++------
.../textual_inversion/textual_inversion.py | 50 ++++++++++++++-----
2 files changed, 59 insertions(+), 29 deletions(-)
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 2e84583b..38f35c58 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -332,7 +332,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from modules import images
- assert hypernetwork_name, 'hypernetwork not selected'
+ save_hypernetwork_every = save_hypernetwork_every or 0
+ create_image_every = create_image_every or 0
+ textual_inversion.validate_train_inputs(hypernetwork_name, learn_rate, batch_size, data_root, template_file, steps, save_hypernetwork_every, create_image_every, log_directory, name="hypernetwork")
path = shared.hypernetworks.get(hypernetwork_name, None)
shared.loaded_hypernetwork = Hypernetwork()
@@ -358,39 +360,43 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
else:
images_dir = None
+ hypernetwork = shared.loaded_hypernetwork
+
+ ititial_step = hypernetwork.step or 0
+ if ititial_step > steps:
+ shared.state.textinfo = f"Model has already been trained beyond specified max steps"
+ return hypernetwork, filename
+
+ scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
+
+ # dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
with torch.autocast("cuda"):
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size)
+
if unload:
shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu)
- hypernetwork = shared.loaded_hypernetwork
- weights = hypernetwork.weights()
- for weight in weights:
- weight.requires_grad = True
-
size = len(ds.indexes)
loss_dict = defaultdict(lambda : deque(maxlen = 1024))
losses = torch.zeros((size,))
previous_mean_losses = [0]
previous_mean_loss = 0
print("Mean loss of {} elements".format(size))
-
- last_saved_file = ""
- last_saved_image = ""
- forced_filename = ""
-
- ititial_step = hypernetwork.step or 0
- if ititial_step > steps:
- return hypernetwork, filename
-
- scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
+
+ weights = hypernetwork.weights()
+ for weight in weights:
+ weight.requires_grad = True
# if optimizer == "AdamW": or else Adam / AdamW / SGD, etc...
optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
steps_without_grad = 0
+ last_saved_file = ""
+ last_saved_image = ""
+ forced_filename = ""
+
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
for i, entries in pbar:
hypernetwork.step = i + ititial_step
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 17dfb223..44f06443 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -204,9 +204,30 @@ def write_loss(log_directory, filename, step, epoch_len, values):
**values,
})
+def validate_train_inputs(model_name, learn_rate, batch_size, data_root, template_file, steps, save_model_every, create_image_every, log_directory, name="embedding"):
+ assert model_name, f"{name} not selected"
+ assert learn_rate, "Learning rate is empty or 0"
+ assert isinstance(batch_size, int), "Batch size must be integer"
+ assert batch_size > 0, "Batch size must be positive"
+ assert data_root, "Dataset directory is empty"
+ assert os.path.isdir(data_root), "Dataset directory doesn't exist"
+ assert os.listdir(data_root), "Dataset directory is empty"
+ assert template_file, "Prompt template file is empty"
+ assert os.path.isfile(template_file), "Prompt template file doesn't exist"
+ assert steps, "Max steps is empty or 0"
+ assert isinstance(steps, int), "Max steps must be integer"
+ assert steps > 0 , "Max steps must be positive"
+ assert isinstance(save_model_every, int), "Save {name} must be integer"
+ assert save_model_every >= 0 , "Save {name} must be positive or 0"
+ assert isinstance(create_image_every, int), "Create image must be integer"
+ assert create_image_every >= 0 , "Create image must be positive or 0"
+ if save_model_every or create_image_every:
+ assert log_directory, "Log directory is empty"
def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
- assert embedding_name, 'embedding not selected'
+ save_embedding_every = save_embedding_every or 0
+ create_image_every = create_image_every or 0
+ validate_train_inputs(embedding_name, learn_rate, batch_size, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding")
shared.state.textinfo = "Initializing textual inversion training..."
shared.state.job_count = steps
@@ -232,17 +253,27 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
os.makedirs(images_embeds_dir, exist_ok=True)
else:
images_embeds_dir = None
-
- cond_model = shared.sd_model.cond_stage_model
- shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
- with torch.autocast("cuda"):
- ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size)
+ cond_model = shared.sd_model.cond_stage_model
hijack = sd_hijack.model_hijack
embedding = hijack.embedding_db.word_embeddings[embedding_name]
+
+ ititial_step = embedding.step or 0
+ if ititial_step > steps:
+ shared.state.textinfo = f"Model has already been trained beyond specified max steps"
+ return embedding, filename
+
+ scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
+
+ # dataset loading may take a while, so input validations and early returns should be done before this
+ shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
+ with torch.autocast("cuda"):
+ ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size)
+
embedding.vec.requires_grad = True
+ optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
losses = torch.zeros((32,))
@@ -251,13 +282,6 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
forced_filename = ""
embedding_yet_to_be_embedded = False
- ititial_step = embedding.step or 0
- if ititial_step > steps:
- return embedding, filename
-
- scheduler = LearnRateScheduler(learn_rate, steps, ititial_step)
- optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate)
-
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
for i, entries in pbar:
embedding.step = i + ititial_step
From 3ce2bfdf95bd5f26d0f6e250e67338ada91980d1 Mon Sep 17 00:00:00 2001
From: Muhammad Rizqi Nur
Date: Sat, 29 Oct 2022 19:43:21 +0700
Subject: [PATCH 2/6] Add cleanup after training
---
modules/hypernetworks/hypernetwork.py | 187 +++++++++---------
.../textual_inversion/textual_inversion.py | 163 +++++++--------
2 files changed, 182 insertions(+), 168 deletions(-)
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 38f35c58..170d5ea4 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -398,110 +398,112 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
forced_filename = ""
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
- for i, entries in pbar:
- hypernetwork.step = i + ititial_step
- if len(loss_dict) > 0:
- previous_mean_losses = [i[-1] for i in loss_dict.values()]
- previous_mean_loss = mean(previous_mean_losses)
-
- scheduler.apply(optimizer, hypernetwork.step)
- if scheduler.finished:
- break
- if shared.state.interrupted:
- break
-
- with torch.autocast("cuda"):
- c = stack_conds([entry.cond for entry in entries]).to(devices.device)
- # c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
- x = torch.stack([entry.latent for entry in entries]).to(devices.device)
- loss = shared.sd_model(x, c)[0]
- del x
- del c
-
- losses[hypernetwork.step % losses.shape[0]] = loss.item()
- for entry in entries:
- loss_dict[entry.filename].append(loss.item())
+ try:
+ for i, entries in pbar:
+ hypernetwork.step = i + ititial_step
+ if len(loss_dict) > 0:
+ previous_mean_losses = [i[-1] for i in loss_dict.values()]
+ previous_mean_loss = mean(previous_mean_losses)
- optimizer.zero_grad()
- weights[0].grad = None
- loss.backward()
+ scheduler.apply(optimizer, hypernetwork.step)
+ if scheduler.finished:
+ break
- if weights[0].grad is None:
- steps_without_grad += 1
+ if shared.state.interrupted:
+ break
+
+ with torch.autocast("cuda"):
+ c = stack_conds([entry.cond for entry in entries]).to(devices.device)
+ # c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
+ x = torch.stack([entry.latent for entry in entries]).to(devices.device)
+ loss = shared.sd_model(x, c)[0]
+ del x
+ del c
+
+ losses[hypernetwork.step % losses.shape[0]] = loss.item()
+ for entry in entries:
+ loss_dict[entry.filename].append(loss.item())
+
+ optimizer.zero_grad()
+ weights[0].grad = None
+ loss.backward()
+
+ if weights[0].grad is None:
+ steps_without_grad += 1
+ else:
+ steps_without_grad = 0
+ assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue'
+
+ optimizer.step()
+
+ steps_done = hypernetwork.step + 1
+
+ if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
+ raise RuntimeError("Loss diverged.")
+
+ if len(previous_mean_losses) > 1:
+ std = stdev(previous_mean_losses)
else:
- steps_without_grad = 0
- assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue'
+ std = 0
+ dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})"
+ pbar.set_description(dataset_loss_info)
- optimizer.step()
+ if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
+ # Before saving, change name to match current checkpoint.
+ hypernetwork.name = f'{hypernetwork_name}-{steps_done}'
+ last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
+ hypernetwork.save(last_saved_file)
- steps_done = hypernetwork.step + 1
+ textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
+ "loss": f"{previous_mean_loss:.7f}",
+ "learn_rate": scheduler.learn_rate
+ })
- if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
- raise RuntimeError("Loss diverged.")
-
- if len(previous_mean_losses) > 1:
- std = stdev(previous_mean_losses)
- else:
- std = 0
- dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})"
- pbar.set_description(dataset_loss_info)
+ if images_dir is not None and steps_done % create_image_every == 0:
+ forced_filename = f'{hypernetwork_name}-{steps_done}'
+ last_saved_image = os.path.join(images_dir, forced_filename)
- if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
- # Before saving, change name to match current checkpoint.
- hypernetwork.name = f'{hypernetwork_name}-{steps_done}'
- last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
- hypernetwork.save(last_saved_file)
+ optimizer.zero_grad()
+ shared.sd_model.cond_stage_model.to(devices.device)
+ shared.sd_model.first_stage_model.to(devices.device)
- textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
- "loss": f"{previous_mean_loss:.7f}",
- "learn_rate": scheduler.learn_rate
- })
+ p = processing.StableDiffusionProcessingTxt2Img(
+ sd_model=shared.sd_model,
+ do_not_save_grid=True,
+ do_not_save_samples=True,
+ )
- if images_dir is not None and steps_done % create_image_every == 0:
- forced_filename = f'{hypernetwork_name}-{steps_done}'
- last_saved_image = os.path.join(images_dir, forced_filename)
+ if preview_from_txt2img:
+ p.prompt = preview_prompt
+ p.negative_prompt = preview_negative_prompt
+ p.steps = preview_steps
+ p.sampler_index = preview_sampler_index
+ p.cfg_scale = preview_cfg_scale
+ p.seed = preview_seed
+ p.width = preview_width
+ p.height = preview_height
+ else:
+ p.prompt = entries[0].cond_text
+ p.steps = 20
- optimizer.zero_grad()
- shared.sd_model.cond_stage_model.to(devices.device)
- shared.sd_model.first_stage_model.to(devices.device)
+ preview_text = p.prompt
- p = processing.StableDiffusionProcessingTxt2Img(
- sd_model=shared.sd_model,
- do_not_save_grid=True,
- do_not_save_samples=True,
- )
+ processed = processing.process_images(p)
+ image = processed.images[0] if len(processed.images)>0 else None
- if preview_from_txt2img:
- p.prompt = preview_prompt
- p.negative_prompt = preview_negative_prompt
- p.steps = preview_steps
- p.sampler_index = preview_sampler_index
- p.cfg_scale = preview_cfg_scale
- p.seed = preview_seed
- p.width = preview_width
- p.height = preview_height
- else:
- p.prompt = entries[0].cond_text
- p.steps = 20
+ if unload:
+ shared.sd_model.cond_stage_model.to(devices.cpu)
+ shared.sd_model.first_stage_model.to(devices.cpu)
- preview_text = p.prompt
+ if image is not None:
+ shared.state.current_image = image
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
+ last_saved_image += f", prompt: {preview_text}"
- processed = processing.process_images(p)
- image = processed.images[0] if len(processed.images)>0 else None
+ shared.state.job_no = hypernetwork.step
- if unload:
- shared.sd_model.cond_stage_model.to(devices.cpu)
- shared.sd_model.first_stage_model.to(devices.cpu)
-
- if image is not None:
- shared.state.current_image = image
- last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
- last_saved_image += f", prompt: {preview_text}"
-
- shared.state.job_no = hypernetwork.step
-
- shared.state.textinfo = f"""
+ shared.state.textinfo = f"""
Loss: {previous_mean_loss:.7f}
Step: {hypernetwork.step}
@@ -510,7 +512,14 @@ Last saved hypernetwork: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
"""
-
+ finally:
+ if weights:
+ for weight in weights:
+ weight.requires_grad = False
+ if unload:
+ shared.sd_model.cond_stage_model.to(devices.device)
+ shared.sd_model.first_stage_model.to(devices.device)
+
report_statistics(loss_dict)
checkpoint = sd_models.select_checkpoint()
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 44f06443..fd7f0897 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -283,111 +283,113 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
embedding_yet_to_be_embedded = False
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
- for i, entries in pbar:
- embedding.step = i + ititial_step
- scheduler.apply(optimizer, embedding.step)
- if scheduler.finished:
- break
+ try:
+ for i, entries in pbar:
+ embedding.step = i + ititial_step
- if shared.state.interrupted:
- break
+ scheduler.apply(optimizer, embedding.step)
+ if scheduler.finished:
+ break
- with torch.autocast("cuda"):
- c = cond_model([entry.cond_text for entry in entries])
- x = torch.stack([entry.latent for entry in entries]).to(devices.device)
- loss = shared.sd_model(x, c)[0]
- del x
+ if shared.state.interrupted:
+ break
- losses[embedding.step % losses.shape[0]] = loss.item()
+ with torch.autocast("cuda"):
+ c = cond_model([entry.cond_text for entry in entries])
+ x = torch.stack([entry.latent for entry in entries]).to(devices.device)
+ loss = shared.sd_model(x, c)[0]
+ del x
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
+ losses[embedding.step % losses.shape[0]] = loss.item()
- steps_done = embedding.step + 1
+ optimizer.zero_grad()
+ loss.backward()
+ optimizer.step()
- epoch_num = embedding.step // len(ds)
- epoch_step = embedding.step % len(ds)
+ steps_done = embedding.step + 1
- pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}")
+ epoch_num = embedding.step // len(ds)
+ epoch_step = embedding.step % len(ds)
- if embedding_dir is not None and steps_done % save_embedding_every == 0:
- # Before saving, change name to match current checkpoint.
- embedding.name = f'{embedding_name}-{steps_done}'
- last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt')
- embedding.save(last_saved_file)
- embedding_yet_to_be_embedded = True
+ pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}")
- write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
- "loss": f"{losses.mean():.7f}",
- "learn_rate": scheduler.learn_rate
- })
+ if embedding_dir is not None and steps_done % save_embedding_every == 0:
+ # Before saving, change name to match current checkpoint.
+ embedding.name = f'{embedding_name}-{steps_done}'
+ last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt')
+ embedding.save(last_saved_file)
+ embedding_yet_to_be_embedded = True
- if images_dir is not None and steps_done % create_image_every == 0:
- forced_filename = f'{embedding_name}-{steps_done}'
- last_saved_image = os.path.join(images_dir, forced_filename)
- p = processing.StableDiffusionProcessingTxt2Img(
- sd_model=shared.sd_model,
- do_not_save_grid=True,
- do_not_save_samples=True,
- do_not_reload_embeddings=True,
- )
+ write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
+ "loss": f"{losses.mean():.7f}",
+ "learn_rate": scheduler.learn_rate
+ })
- if preview_from_txt2img:
- p.prompt = preview_prompt
- p.negative_prompt = preview_negative_prompt
- p.steps = preview_steps
- p.sampler_index = preview_sampler_index
- p.cfg_scale = preview_cfg_scale
- p.seed = preview_seed
- p.width = preview_width
- p.height = preview_height
- else:
- p.prompt = entries[0].cond_text
- p.steps = 20
- p.width = training_width
- p.height = training_height
+ if images_dir is not None and steps_done % create_image_every == 0:
+ forced_filename = f'{embedding_name}-{steps_done}'
+ last_saved_image = os.path.join(images_dir, forced_filename)
+ p = processing.StableDiffusionProcessingTxt2Img(
+ sd_model=shared.sd_model,
+ do_not_save_grid=True,
+ do_not_save_samples=True,
+ do_not_reload_embeddings=True,
+ )
- preview_text = p.prompt
+ if preview_from_txt2img:
+ p.prompt = preview_prompt
+ p.negative_prompt = preview_negative_prompt
+ p.steps = preview_steps
+ p.sampler_index = preview_sampler_index
+ p.cfg_scale = preview_cfg_scale
+ p.seed = preview_seed
+ p.width = preview_width
+ p.height = preview_height
+ else:
+ p.prompt = entries[0].cond_text
+ p.steps = 20
+ p.width = training_width
+ p.height = training_height
- processed = processing.process_images(p)
- image = processed.images[0]
+ preview_text = p.prompt
- shared.state.current_image = image
+ processed = processing.process_images(p)
+ image = processed.images[0]
- if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
+ shared.state.current_image = image
- last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
+ if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
- info = PngImagePlugin.PngInfo()
- data = torch.load(last_saved_file)
- info.add_text("sd-ti-embedding", embedding_to_b64(data))
+ last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
- title = "<{}>".format(data.get('name', '???'))
+ info = PngImagePlugin.PngInfo()
+ data = torch.load(last_saved_file)
+ info.add_text("sd-ti-embedding", embedding_to_b64(data))
- try:
- vectorSize = list(data['string_to_param'].values())[0].shape[0]
- except Exception as e:
- vectorSize = '?'
+ title = "<{}>".format(data.get('name', '???'))
- checkpoint = sd_models.select_checkpoint()
- footer_left = checkpoint.model_name
- footer_mid = '[{}]'.format(checkpoint.hash)
- footer_right = '{}v {}s'.format(vectorSize, steps_done)
+ try:
+ vectorSize = list(data['string_to_param'].values())[0].shape[0]
+ except Exception as e:
+ vectorSize = '?'
- captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
- captioned_image = insert_image_data_embed(captioned_image, data)
+ checkpoint = sd_models.select_checkpoint()
+ footer_left = checkpoint.model_name
+ footer_mid = '[{}]'.format(checkpoint.hash)
+ footer_right = '{}v {}s'.format(vectorSize, steps_done)
- captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
- embedding_yet_to_be_embedded = False
+ captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
+ captioned_image = insert_image_data_embed(captioned_image, data)
- last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
- last_saved_image += f", prompt: {preview_text}"
+ captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
+ embedding_yet_to_be_embedded = False
- shared.state.job_no = embedding.step
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
+ last_saved_image += f", prompt: {preview_text}"
- shared.state.textinfo = f"""
+ shared.state.job_no = embedding.step
+
+ shared.state.textinfo = f"""
Loss: {losses.mean():.7f}
Step: {embedding.step}
@@ -396,6 +398,9 @@ Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
"""
+ finally:
+ if embedding and embedding.vec is not None:
+ embedding.vec.requires_grad = False
checkpoint = sd_models.select_checkpoint()
From a27d19de2eff633b6a39f9f4a5c0f2d6abb81bb5 Mon Sep 17 00:00:00 2001
From: Muhammad Rizqi Nur
Date: Sat, 29 Oct 2022 19:44:05 +0700
Subject: [PATCH 3/6] Additional assert on dataset
---
modules/textual_inversion/dataset.py | 2 ++
1 file changed, 2 insertions(+)
diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py
index 8bb00d27..ad726577 100644
--- a/modules/textual_inversion/dataset.py
+++ b/modules/textual_inversion/dataset.py
@@ -42,6 +42,8 @@ class PersonalizedBase(Dataset):
self.lines = lines
assert data_root, 'dataset directory not specified'
+ assert os.path.isdir(data_root), "Dataset directory doesn't exist"
+ assert os.listdir(data_root), "Dataset directory is empty"
cond_model = shared.sd_model.cond_stage_model
From ab05a74ead9fabb45dd099990e34061c7eb02ca3 Mon Sep 17 00:00:00 2001
From: Muhammad Rizqi Nur
Date: Sun, 30 Oct 2022 00:32:02 +0700
Subject: [PATCH 4/6] Revert "Add cleanup after training"
This reverts commit 3ce2bfdf95bd5f26d0f6e250e67338ada91980d1.
---
modules/hypernetworks/hypernetwork.py | 191 +++++++++---------
.../textual_inversion/textual_inversion.py | 163 ++++++++-------
2 files changed, 170 insertions(+), 184 deletions(-)
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 170d5ea4..38f35c58 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -398,112 +398,110 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
forced_filename = ""
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
-
- try:
- for i, entries in pbar:
- hypernetwork.step = i + ititial_step
- if len(loss_dict) > 0:
- previous_mean_losses = [i[-1] for i in loss_dict.values()]
- previous_mean_loss = mean(previous_mean_losses)
-
- scheduler.apply(optimizer, hypernetwork.step)
- if scheduler.finished:
- break
-
- if shared.state.interrupted:
- break
-
- with torch.autocast("cuda"):
- c = stack_conds([entry.cond for entry in entries]).to(devices.device)
- # c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
- x = torch.stack([entry.latent for entry in entries]).to(devices.device)
- loss = shared.sd_model(x, c)[0]
- del x
- del c
-
- losses[hypernetwork.step % losses.shape[0]] = loss.item()
- for entry in entries:
- loss_dict[entry.filename].append(loss.item())
-
- optimizer.zero_grad()
- weights[0].grad = None
- loss.backward()
-
- if weights[0].grad is None:
- steps_without_grad += 1
- else:
- steps_without_grad = 0
- assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue'
-
- optimizer.step()
-
- steps_done = hypernetwork.step + 1
-
- if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
- raise RuntimeError("Loss diverged.")
+ for i, entries in pbar:
+ hypernetwork.step = i + ititial_step
+ if len(loss_dict) > 0:
+ previous_mean_losses = [i[-1] for i in loss_dict.values()]
+ previous_mean_loss = mean(previous_mean_losses)
- if len(previous_mean_losses) > 1:
- std = stdev(previous_mean_losses)
+ scheduler.apply(optimizer, hypernetwork.step)
+ if scheduler.finished:
+ break
+
+ if shared.state.interrupted:
+ break
+
+ with torch.autocast("cuda"):
+ c = stack_conds([entry.cond for entry in entries]).to(devices.device)
+ # c = torch.vstack([entry.cond for entry in entries]).to(devices.device)
+ x = torch.stack([entry.latent for entry in entries]).to(devices.device)
+ loss = shared.sd_model(x, c)[0]
+ del x
+ del c
+
+ losses[hypernetwork.step % losses.shape[0]] = loss.item()
+ for entry in entries:
+ loss_dict[entry.filename].append(loss.item())
+
+ optimizer.zero_grad()
+ weights[0].grad = None
+ loss.backward()
+
+ if weights[0].grad is None:
+ steps_without_grad += 1
else:
- std = 0
- dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})"
- pbar.set_description(dataset_loss_info)
+ steps_without_grad = 0
+ assert steps_without_grad < 10, 'no gradient found for the trained weight after backward() for 10 steps in a row; this is a bug; training cannot continue'
- if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
- # Before saving, change name to match current checkpoint.
- hypernetwork.name = f'{hypernetwork_name}-{steps_done}'
- last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
- hypernetwork.save(last_saved_file)
+ optimizer.step()
- textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
- "loss": f"{previous_mean_loss:.7f}",
- "learn_rate": scheduler.learn_rate
- })
+ steps_done = hypernetwork.step + 1
- if images_dir is not None and steps_done % create_image_every == 0:
- forced_filename = f'{hypernetwork_name}-{steps_done}'
- last_saved_image = os.path.join(images_dir, forced_filename)
+ if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
+ raise RuntimeError("Loss diverged.")
+
+ if len(previous_mean_losses) > 1:
+ std = stdev(previous_mean_losses)
+ else:
+ std = 0
+ dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})"
+ pbar.set_description(dataset_loss_info)
- optimizer.zero_grad()
- shared.sd_model.cond_stage_model.to(devices.device)
- shared.sd_model.first_stage_model.to(devices.device)
+ if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
+ # Before saving, change name to match current checkpoint.
+ hypernetwork.name = f'{hypernetwork_name}-{steps_done}'
+ last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
+ hypernetwork.save(last_saved_file)
- p = processing.StableDiffusionProcessingTxt2Img(
- sd_model=shared.sd_model,
- do_not_save_grid=True,
- do_not_save_samples=True,
- )
+ textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
+ "loss": f"{previous_mean_loss:.7f}",
+ "learn_rate": scheduler.learn_rate
+ })
- if preview_from_txt2img:
- p.prompt = preview_prompt
- p.negative_prompt = preview_negative_prompt
- p.steps = preview_steps
- p.sampler_index = preview_sampler_index
- p.cfg_scale = preview_cfg_scale
- p.seed = preview_seed
- p.width = preview_width
- p.height = preview_height
- else:
- p.prompt = entries[0].cond_text
- p.steps = 20
+ if images_dir is not None and steps_done % create_image_every == 0:
+ forced_filename = f'{hypernetwork_name}-{steps_done}'
+ last_saved_image = os.path.join(images_dir, forced_filename)
- preview_text = p.prompt
+ optimizer.zero_grad()
+ shared.sd_model.cond_stage_model.to(devices.device)
+ shared.sd_model.first_stage_model.to(devices.device)
- processed = processing.process_images(p)
- image = processed.images[0] if len(processed.images)>0 else None
+ p = processing.StableDiffusionProcessingTxt2Img(
+ sd_model=shared.sd_model,
+ do_not_save_grid=True,
+ do_not_save_samples=True,
+ )
- if unload:
- shared.sd_model.cond_stage_model.to(devices.cpu)
- shared.sd_model.first_stage_model.to(devices.cpu)
+ if preview_from_txt2img:
+ p.prompt = preview_prompt
+ p.negative_prompt = preview_negative_prompt
+ p.steps = preview_steps
+ p.sampler_index = preview_sampler_index
+ p.cfg_scale = preview_cfg_scale
+ p.seed = preview_seed
+ p.width = preview_width
+ p.height = preview_height
+ else:
+ p.prompt = entries[0].cond_text
+ p.steps = 20
- if image is not None:
- shared.state.current_image = image
- last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
- last_saved_image += f", prompt: {preview_text}"
+ preview_text = p.prompt
- shared.state.job_no = hypernetwork.step
+ processed = processing.process_images(p)
+ image = processed.images[0] if len(processed.images)>0 else None
- shared.state.textinfo = f"""
+ if unload:
+ shared.sd_model.cond_stage_model.to(devices.cpu)
+ shared.sd_model.first_stage_model.to(devices.cpu)
+
+ if image is not None:
+ shared.state.current_image = image
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
+ last_saved_image += f", prompt: {preview_text}"
+
+ shared.state.job_no = hypernetwork.step
+
+ shared.state.textinfo = f"""
Loss: {previous_mean_loss:.7f}
Step: {hypernetwork.step}
@@ -512,14 +510,7 @@ Last saved hypernetwork: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
"""
- finally:
- if weights:
- for weight in weights:
- weight.requires_grad = False
- if unload:
- shared.sd_model.cond_stage_model.to(devices.device)
- shared.sd_model.first_stage_model.to(devices.device)
-
+
report_statistics(loss_dict)
checkpoint = sd_models.select_checkpoint()
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index fd7f0897..44f06443 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -283,113 +283,111 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
embedding_yet_to_be_embedded = False
pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step)
+ for i, entries in pbar:
+ embedding.step = i + ititial_step
- try:
- for i, entries in pbar:
- embedding.step = i + ititial_step
+ scheduler.apply(optimizer, embedding.step)
+ if scheduler.finished:
+ break
- scheduler.apply(optimizer, embedding.step)
- if scheduler.finished:
- break
+ if shared.state.interrupted:
+ break
- if shared.state.interrupted:
- break
+ with torch.autocast("cuda"):
+ c = cond_model([entry.cond_text for entry in entries])
+ x = torch.stack([entry.latent for entry in entries]).to(devices.device)
+ loss = shared.sd_model(x, c)[0]
+ del x
- with torch.autocast("cuda"):
- c = cond_model([entry.cond_text for entry in entries])
- x = torch.stack([entry.latent for entry in entries]).to(devices.device)
- loss = shared.sd_model(x, c)[0]
- del x
+ losses[embedding.step % losses.shape[0]] = loss.item()
- losses[embedding.step % losses.shape[0]] = loss.item()
+ optimizer.zero_grad()
+ loss.backward()
+ optimizer.step()
- optimizer.zero_grad()
- loss.backward()
- optimizer.step()
+ steps_done = embedding.step + 1
- steps_done = embedding.step + 1
+ epoch_num = embedding.step // len(ds)
+ epoch_step = embedding.step % len(ds)
- epoch_num = embedding.step // len(ds)
- epoch_step = embedding.step % len(ds)
+ pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}")
- pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}")
+ if embedding_dir is not None and steps_done % save_embedding_every == 0:
+ # Before saving, change name to match current checkpoint.
+ embedding.name = f'{embedding_name}-{steps_done}'
+ last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt')
+ embedding.save(last_saved_file)
+ embedding_yet_to_be_embedded = True
- if embedding_dir is not None and steps_done % save_embedding_every == 0:
- # Before saving, change name to match current checkpoint.
- embedding.name = f'{embedding_name}-{steps_done}'
- last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt')
- embedding.save(last_saved_file)
- embedding_yet_to_be_embedded = True
+ write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
+ "loss": f"{losses.mean():.7f}",
+ "learn_rate": scheduler.learn_rate
+ })
- write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
- "loss": f"{losses.mean():.7f}",
- "learn_rate": scheduler.learn_rate
- })
+ if images_dir is not None and steps_done % create_image_every == 0:
+ forced_filename = f'{embedding_name}-{steps_done}'
+ last_saved_image = os.path.join(images_dir, forced_filename)
+ p = processing.StableDiffusionProcessingTxt2Img(
+ sd_model=shared.sd_model,
+ do_not_save_grid=True,
+ do_not_save_samples=True,
+ do_not_reload_embeddings=True,
+ )
- if images_dir is not None and steps_done % create_image_every == 0:
- forced_filename = f'{embedding_name}-{steps_done}'
- last_saved_image = os.path.join(images_dir, forced_filename)
- p = processing.StableDiffusionProcessingTxt2Img(
- sd_model=shared.sd_model,
- do_not_save_grid=True,
- do_not_save_samples=True,
- do_not_reload_embeddings=True,
- )
+ if preview_from_txt2img:
+ p.prompt = preview_prompt
+ p.negative_prompt = preview_negative_prompt
+ p.steps = preview_steps
+ p.sampler_index = preview_sampler_index
+ p.cfg_scale = preview_cfg_scale
+ p.seed = preview_seed
+ p.width = preview_width
+ p.height = preview_height
+ else:
+ p.prompt = entries[0].cond_text
+ p.steps = 20
+ p.width = training_width
+ p.height = training_height
- if preview_from_txt2img:
- p.prompt = preview_prompt
- p.negative_prompt = preview_negative_prompt
- p.steps = preview_steps
- p.sampler_index = preview_sampler_index
- p.cfg_scale = preview_cfg_scale
- p.seed = preview_seed
- p.width = preview_width
- p.height = preview_height
- else:
- p.prompt = entries[0].cond_text
- p.steps = 20
- p.width = training_width
- p.height = training_height
+ preview_text = p.prompt
- preview_text = p.prompt
+ processed = processing.process_images(p)
+ image = processed.images[0]
- processed = processing.process_images(p)
- image = processed.images[0]
+ shared.state.current_image = image
- shared.state.current_image = image
+ if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
- if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
+ last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
- last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
+ info = PngImagePlugin.PngInfo()
+ data = torch.load(last_saved_file)
+ info.add_text("sd-ti-embedding", embedding_to_b64(data))
- info = PngImagePlugin.PngInfo()
- data = torch.load(last_saved_file)
- info.add_text("sd-ti-embedding", embedding_to_b64(data))
+ title = "<{}>".format(data.get('name', '???'))
- title = "<{}>".format(data.get('name', '???'))
+ try:
+ vectorSize = list(data['string_to_param'].values())[0].shape[0]
+ except Exception as e:
+ vectorSize = '?'
- try:
- vectorSize = list(data['string_to_param'].values())[0].shape[0]
- except Exception as e:
- vectorSize = '?'
+ checkpoint = sd_models.select_checkpoint()
+ footer_left = checkpoint.model_name
+ footer_mid = '[{}]'.format(checkpoint.hash)
+ footer_right = '{}v {}s'.format(vectorSize, steps_done)
- checkpoint = sd_models.select_checkpoint()
- footer_left = checkpoint.model_name
- footer_mid = '[{}]'.format(checkpoint.hash)
- footer_right = '{}v {}s'.format(vectorSize, steps_done)
+ captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
+ captioned_image = insert_image_data_embed(captioned_image, data)
- captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
- captioned_image = insert_image_data_embed(captioned_image, data)
+ captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
+ embedding_yet_to_be_embedded = False
- captioned_image.save(last_saved_image_chunks, "PNG", pnginfo=info)
- embedding_yet_to_be_embedded = False
+ last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
+ last_saved_image += f", prompt: {preview_text}"
- last_saved_image, last_text_info = images.save_image(image, images_dir, "", p.seed, p.prompt, shared.opts.samples_format, processed.infotexts[0], p=p, forced_filename=forced_filename, save_to_dirs=False)
- last_saved_image += f", prompt: {preview_text}"
+ shared.state.job_no = embedding.step
- shared.state.job_no = embedding.step
-
- shared.state.textinfo = f"""
+ shared.state.textinfo = f"""
Loss: {losses.mean():.7f}
Step: {embedding.step}
@@ -398,9 +396,6 @@ Last saved embedding: {html.escape(last_saved_file)}
Last saved image: {html.escape(last_saved_image)}
"""
- finally:
- if embedding and embedding.vec is not None:
- embedding.vec.requires_grad = False
checkpoint = sd_models.select_checkpoint()
From a07f054c86f33360ff620d6a3fffdee366ab2d99 Mon Sep 17 00:00:00 2001
From: Muhammad Rizqi Nur
Date: Sun, 30 Oct 2022 00:49:29 +0700
Subject: [PATCH 5/6] Add missing info on hypernetwork/embedding model log
Mentioned here: https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions/1528#discussioncomment-3991513
Also group the saving into one
---
modules/hypernetworks/hypernetwork.py | 31 ++++++++++-----
.../textual_inversion/textual_inversion.py | 39 ++++++++++++-------
2 files changed, 47 insertions(+), 23 deletions(-)
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 38f35c58..86daf825 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -361,6 +361,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
images_dir = None
hypernetwork = shared.loaded_hypernetwork
+ checkpoint = sd_models.select_checkpoint()
ititial_step = hypernetwork.step or 0
if ititial_step > steps:
@@ -449,9 +450,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
# Before saving, change name to match current checkpoint.
- hypernetwork.name = f'{hypernetwork_name}-{steps_done}'
- last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
- hypernetwork.save(last_saved_file)
+ hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
+ last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
+ save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
"loss": f"{previous_mean_loss:.7f}",
@@ -512,13 +513,23 @@ Last saved image: {html.escape(last_saved_image)}
"""
report_statistics(loss_dict)
- checkpoint = sd_models.select_checkpoint()
- hypernetwork.sd_checkpoint = checkpoint.hash
- hypernetwork.sd_checkpoint_name = checkpoint.model_name
- # Before saving for the last time, change name back to the base name (as opposed to the save_hypernetwork_every step-suffixed naming convention).
- hypernetwork.name = hypernetwork_name
- filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork.name}.pt')
- hypernetwork.save(filename)
+ filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
+ save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
return hypernetwork, filename
+
+def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
+ old_hypernetwork_name = hypernetwork.name
+ old_sd_checkpoint = hypernetwork.sd_checkpoint if hasattr(hypernetwork, "sd_checkpoint") else None
+ old_sd_checkpoint_name = hypernetwork.sd_checkpoint_name if hasattr(hypernetwork, "sd_checkpoint_name") else None
+ try:
+ hypernetwork.sd_checkpoint = checkpoint.hash
+ hypernetwork.sd_checkpoint_name = checkpoint.model_name
+ hypernetwork.name = hypernetwork_name
+ hypernetwork.save(filename)
+ except:
+ hypernetwork.sd_checkpoint = old_sd_checkpoint
+ hypernetwork.sd_checkpoint_name = old_sd_checkpoint_name
+ hypernetwork.name = old_hypernetwork_name
+ raise
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index 44f06443..ee9917ce 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -119,7 +119,7 @@ class EmbeddingDatabase:
vec = emb.detach().to(devices.device, dtype=torch.float32)
embedding = Embedding(vec, name)
embedding.step = data.get('step', None)
- embedding.sd_checkpoint = data.get('hash', None)
+ embedding.sd_checkpoint = data.get('sd_checkpoint', None)
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
self.register_embedding(embedding, shared.sd_model)
@@ -259,6 +259,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
hijack = sd_hijack.model_hijack
embedding = hijack.embedding_db.word_embeddings[embedding_name]
+ checkpoint = sd_models.select_checkpoint()
ititial_step = embedding.step or 0
if ititial_step > steps:
@@ -314,9 +315,9 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
if embedding_dir is not None and steps_done % save_embedding_every == 0:
# Before saving, change name to match current checkpoint.
- embedding.name = f'{embedding_name}-{steps_done}'
- last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt')
- embedding.save(last_saved_file)
+ embedding_name_every = f'{embedding_name}-{steps_done}'
+ last_saved_file = os.path.join(embedding_dir, f'{embedding_name_every}.pt')
+ save_embedding(embedding, checkpoint, embedding_name_every, last_saved_file, remove_cached_checksum=True)
embedding_yet_to_be_embedded = True
write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), {
@@ -397,14 +398,26 @@ Last saved image: {html.escape(last_saved_image)}
"""
- checkpoint = sd_models.select_checkpoint()
-
- embedding.sd_checkpoint = checkpoint.hash
- embedding.sd_checkpoint_name = checkpoint.model_name
- embedding.cached_checksum = None
- # Before saving for the last time, change name back to base name (as opposed to the save_embedding_every step-suffixed naming convention).
- embedding.name = embedding_name
- filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding.name}.pt')
- embedding.save(filename)
+ filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt')
+ save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True)
return embedding, filename
+
+def save_embedding(embedding, checkpoint, embedding_name, filename, remove_cached_checksum=True):
+ old_embedding_name = embedding.name
+ old_sd_checkpoint = embedding.sd_checkpoint if hasattr(embedding, "sd_checkpoint") else None
+ old_sd_checkpoint_name = embedding.sd_checkpoint_name if hasattr(embedding, "sd_checkpoint_name") else None
+ old_cached_checksum = embedding.cached_checksum if hasattr(embedding, "cached_checksum") else None
+ try:
+ embedding.sd_checkpoint = checkpoint.hash
+ embedding.sd_checkpoint_name = checkpoint.model_name
+ if remove_cached_checksum:
+ embedding.cached_checksum = None
+ embedding.name = embedding_name
+ embedding.save(filename)
+ except:
+ embedding.sd_checkpoint = old_sd_checkpoint
+ embedding.sd_checkpoint_name = old_sd_checkpoint_name
+ embedding.name = old_embedding_name
+ embedding.cached_checksum = old_cached_checksum
+ raise
From 3d58510f214c645ce5cdb261aa47df6573b239e9 Mon Sep 17 00:00:00 2001
From: Muhammad Rizqi Nur
Date: Sun, 30 Oct 2022 00:54:59 +0700
Subject: [PATCH 6/6] Fix dataset still being loaded even when training will be
skipped
---
modules/hypernetworks/hypernetwork.py | 2 +-
modules/textual_inversion/textual_inversion.py | 2 +-
2 files changed, 2 insertions(+), 2 deletions(-)
diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py
index 86daf825..07acadc9 100644
--- a/modules/hypernetworks/hypernetwork.py
+++ b/modules/hypernetworks/hypernetwork.py
@@ -364,7 +364,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
checkpoint = sd_models.select_checkpoint()
ititial_step = hypernetwork.step or 0
- if ititial_step > steps:
+ if ititial_step >= steps:
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
return hypernetwork, filename
diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py
index ee9917ce..e0babb46 100644
--- a/modules/textual_inversion/textual_inversion.py
+++ b/modules/textual_inversion/textual_inversion.py
@@ -262,7 +262,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
checkpoint = sd_models.select_checkpoint()
ititial_step = embedding.step or 0
- if ititial_step > steps:
+ if ititial_step >= steps:
shared.state.textinfo = f"Model has already been trained beyond specified max steps"
return embedding, filename