From 21765c17e634572f1fe7957a2f0655a59c46c878 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Fri, 26 Aug 2022 14:10:40 +0300 Subject: [PATCH] added samples to img2img fixed a bug with sampler selection (oops) --- webui.py | 18 ++++++++++-------- 1 file changed, 10 insertions(+), 8 deletions(-) diff --git a/webui.py b/webui.py index 03675032..4ff9d005 100644 --- a/webui.py +++ b/webui.py @@ -64,7 +64,7 @@ css_hide_progressbar = """ SamplerData = namedtuple('SamplerData', ['name', 'constructor']) samplers = [ - *[SamplerData(x[0], lambda model: KDiffusionSampler(model, x[1])) for x in [ + *[SamplerData(x[0], lambda m, funcname=x[1]: KDiffusionSampler(m, funcname)) for x in [ ('LMS', 'sample_lms'), ('Heun', 'sample_heun'), ('Euler', 'sample_euler'), @@ -72,9 +72,10 @@ samplers = [ ('DPM 2', 'sample_dpm_2'), ('DPM 2 Ancestral', 'sample_dpm_2_ancestral'), ] if hasattr(k_diffusion.sampling, x[1])], - SamplerData('DDIM', lambda model: DDIMSampler(model)), - SamplerData('PLMS', lambda model: PLMSSampler(model)), + SamplerData('DDIM', lambda m: DDIMSampler(model)), + SamplerData('PLMS', lambda m: PLMSSampler(model)), ] +samplers_for_img2img = [x for x in samplers if x.name != 'DDIM' and x.name != 'PLMS'] RealesrganModelInfo = namedtuple("RealesrganModelInfo", ["name", "location", "model", "netscale"]) @@ -197,14 +198,14 @@ class KDiffusionSampler: self.model = m self.model_wrap = k_diffusion.external.CompVisDenoiser(m) self.funcname = funcname + self.func = getattr(k_diffusion.sampling, self.funcname) def sample(self, S, conditioning, batch_size, shape, verbose, unconditional_guidance_scale, unconditional_conditioning, eta, x_T): sigmas = self.model_wrap.get_sigmas(S) x = x_T * sigmas[0] model_wrap_cfg = CFGDenoiser(self.model_wrap) - fun = getattr(k_diffusion.sampling, self.funcname) - samples_ddim = fun(model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale}, disable=False) + samples_ddim = self.func(model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': unconditional_guidance_scale}, disable=False) return samples_ddim, None @@ -810,10 +811,10 @@ txt2img_interface = gr.Interface( ) -def img2img(prompt: str, init_img, ddim_steps: int, use_GFPGAN: bool, prompt_matrix, loopback: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int, resize_mode: int): +def img2img(prompt: str, init_img, ddim_steps: int, sampler_index: int, use_GFPGAN: bool, prompt_matrix, loopback: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, height: int, width: int, resize_mode: int): outpath = opts.outdir or "outputs/img2img-samples" - sampler = KDiffusionSampler(model, 'sample_lms') + sampler = samplers_for_img2img[sampler_index].constructor(model) assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]' @@ -842,7 +843,7 @@ def img2img(prompt: str, init_img, ddim_steps: int, use_GFPGAN: bool, prompt_mat xi = x0 + noise sigma_sched = sigmas[ddim_steps - t_enc - 1:] model_wrap_cfg = CFGDenoiser(sampler.model_wrap) - samples_ddim = k_diffusion.sampling.sample_lms(model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': cfg_scale}, disable=False) + samples_ddim = sampler.func(model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': cfg_scale}, disable=False) return samples_ddim if loopback: @@ -919,6 +920,7 @@ img2img_interface = gr.Interface( gr.Textbox(placeholder="A fantasy landscape, trending on artstation.", lines=1), gr.Image(value=sample_img2img, source="upload", interactive=True, type="pil"), gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50), + gr.Radio(label='Sampling method', choices=[x.name for x in samplers_for_img2img], value=samplers_for_img2img[0].name, type="index"), gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=GFPGAN is not None), gr.Checkbox(label='Create prompt matrix (separate multiple prompts using |, and get all combinations of them)', value=False), gr.Checkbox(label='Loopback (use images from previous batch when creating next batch)', value=False),