diff --git a/modules/masking.py b/modules/masking.py index fd8d9241..a5c4d2da 100644 --- a/modules/masking.py +++ b/modules/masking.py @@ -49,7 +49,7 @@ def expand_crop_region(crop_region, processing_width, processing_height, image_w ratio_processing = processing_width / processing_height if ratio_crop_region > ratio_processing: - desired_height = (x2 - x1) * ratio_processing + desired_height = (x2 - x1) / ratio_processing desired_height_diff = int(desired_height - (y2-y1)) y1 -= desired_height_diff//2 y2 += desired_height_diff - desired_height_diff//2 diff --git a/modules/processing.py b/modules/processing.py index 3a364b5f..2168208c 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -134,11 +134,7 @@ class StableDiffusionProcessing(): # Dummy zero conditioning if we're not using inpainting model. # Still takes up a bit of memory, but no encoder call. # Pretty sure we can just make this a 1x1 image since its not going to be used besides its batch size. - return torch.zeros( - x.shape[0], 5, 1, 1, - dtype=x.dtype, - device=x.device - ) + return x.new_zeros(x.shape[0], 5, 1, 1) height = height or self.height width = width or self.width @@ -156,11 +152,7 @@ class StableDiffusionProcessing(): def img2img_image_conditioning(self, source_image, latent_image, image_mask = None): if self.sampler.conditioning_key not in {'hybrid', 'concat'}: # Dummy zero conditioning if we're not using inpainting model. - return torch.zeros( - latent_image.shape[0], 5, 1, 1, - dtype=latent_image.dtype, - device=latent_image.device - ) + return latent_image.new_zeros(latent_image.shape[0], 5, 1, 1) # Handle the different mask inputs if image_mask is not None: @@ -174,11 +166,11 @@ class StableDiffusionProcessing(): # Inpainting model uses a discretized mask as input, so we round to either 1.0 or 0.0 conditioning_mask = torch.round(conditioning_mask) else: - conditioning_mask = torch.ones(1, 1, *source_image.shape[-2:]) + conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:]) # Create another latent image, this time with a masked version of the original input. # Smoothly interpolate between the masked and unmasked latent conditioning image using a parameter. - conditioning_mask = conditioning_mask.to(source_image.device) + conditioning_mask = conditioning_mask.to(source_image.device).to(source_image.dtype) conditioning_image = torch.lerp( source_image, source_image * (1.0 - conditioning_mask), @@ -674,6 +666,13 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): if opts.use_scale_latent_for_hires_fix: samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear") + + # Avoid making the inpainting conditioning unless necessary as + # this does need some extra compute to decode / encode the image again. + if getattr(self, "inpainting_mask_weight", shared.opts.inpainting_mask_weight) < 1.0: + image_conditioning = self.img2img_image_conditioning(decode_first_stage(self.sd_model, samples), samples) + else: + image_conditioning = self.txt2img_image_conditioning(samples) for i in range(samples.shape[0]): save_intermediate(samples, i) @@ -700,14 +699,14 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples)) + image_conditioning = self.img2img_image_conditioning(decoded_samples, samples) + shared.state.nextjob() self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model) noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) - image_conditioning = self.txt2img_image_conditioning(x) - # GC now before running the next img2img to prevent running out of memory x = None devices.torch_gc()