From 42fbda83bb9830af18187fddb50c1bedd01da502 Mon Sep 17 00:00:00 2001 From: discus0434 Date: Wed, 19 Oct 2022 14:30:33 +0000 Subject: [PATCH] layer options moves into create hnet ui --- modules/hypernetworks/hypernetwork.py | 64 +++++++++++++-------------- modules/hypernetworks/ui.py | 9 +++- modules/shared.py | 2 - modules/ui.py | 8 +++- webui.py | 8 ++-- 5 files changed, 48 insertions(+), 43 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 583ada31..7d519cd9 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -19,37 +19,21 @@ from modules.textual_inversion import textual_inversion from modules.textual_inversion.learn_schedule import LearnRateScheduler -def parse_layer_structure(dim, state_dict): - i = 0 - res = [1] - while (key := "linear.{}.weight".format(i)) in state_dict: - weight = state_dict[key] - res.append(len(weight) // dim) - i += 1 - return res - - class HypernetworkModule(torch.nn.Module): multiplier = 1.0 - layer_structure = None - add_layer_norm = False - def __init__(self, dim, state_dict=None): + def __init__(self, dim, state_dict=None, layer_structure=None, add_layer_norm=False): super().__init__() - if (state_dict is None or 'linear.0.weight' not in state_dict) and self.layer_structure is None: - layer_structure = (1, 2, 1) + if layer_structure is not None: + assert layer_structure[0] == 1, "Multiplier Sequence should start with size 1!" + assert layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!" else: - if self.layer_structure is not None: - assert self.layer_structure[0] == 1, "Multiplier Sequence should start with size 1!" - assert self.layer_structure[-1] == 1, "Multiplier Sequence should end with size 1!" - layer_structure = self.layer_structure - else: - layer_structure = parse_layer_structure(dim, state_dict) + layer_structure = parse_layer_structure(dim, state_dict) linears = [] for i in range(len(layer_structure) - 1): linears.append(torch.nn.Linear(int(dim * layer_structure[i]), int(dim * layer_structure[i+1]))) - if self.add_layer_norm: + if add_layer_norm: linears.append(torch.nn.LayerNorm(int(dim * layer_structure[i+1]))) self.linear = torch.nn.Sequential(*linears) @@ -77,38 +61,47 @@ class HypernetworkModule(torch.nn.Module): return x + self.linear(x) * self.multiplier def trainables(self): - res = [] + layer_structure = [] for layer in self.linear: - res += [layer.weight, layer.bias] - return res + layer_structure += [layer.weight, layer.bias] + return layer_structure def apply_strength(value=None): HypernetworkModule.multiplier = value if value is not None else shared.opts.sd_hypernetwork_strength -def apply_layer_structure(value=None): - HypernetworkModule.layer_structure = value if value is not None else shared.opts.sd_hypernetwork_layer_structure +def parse_layer_structure(dim, state_dict): + i = 0 + layer_structure = [1] + while (key := "linear.{}.weight".format(i)) in state_dict: + weight = state_dict[key] + layer_structure.append(len(weight) // dim) + i += 1 -def apply_layer_norm(value=None): - HypernetworkModule.add_layer_norm = value if value is not None else shared.opts.sd_hypernetwork_add_layer_norm + return layer_structure class Hypernetwork: filename = None name = None - def __init__(self, name=None, enable_sizes=None): + def __init__(self, name=None, enable_sizes=None, layer_structure=None, add_layer_norm=False): self.filename = None self.name = name self.layers = {} self.step = 0 self.sd_checkpoint = None self.sd_checkpoint_name = None + self.layer_structure = layer_structure + self.add_layer_norm = add_layer_norm for size in enable_sizes or []: - self.layers[size] = (HypernetworkModule(size), HypernetworkModule(size)) + self.layers[size] = ( + HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm), + HypernetworkModule(size, None, self.layer_structure, self.add_layer_norm), + ) def weights(self): res = [] @@ -128,6 +121,8 @@ class Hypernetwork: state_dict['step'] = self.step state_dict['name'] = self.name + state_dict['layer_structure'] = self.layer_structure + state_dict['is_layer_norm'] = self.add_layer_norm state_dict['sd_checkpoint'] = self.sd_checkpoint state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name @@ -142,10 +137,15 @@ class Hypernetwork: for size, sd in state_dict.items(): if type(size) == int: - self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1])) + self.layers[size] = ( + HypernetworkModule(size, sd[0], state_dict["layer_structure"], state_dict["is_layer_norm"]), + HypernetworkModule(size, sd[1], state_dict["layer_structure"], state_dict["is_layer_norm"]), + ) self.name = state_dict.get('name', self.name) self.step = state_dict.get('step', 0) + self.layer_structure = state_dict.get('layer_structure', None) + self.add_layer_norm = state_dict.get('is_layer_norm', False) self.sd_checkpoint = state_dict.get('sd_checkpoint', None) self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None) diff --git a/modules/hypernetworks/ui.py b/modules/hypernetworks/ui.py index dfa599af..7e8ea95e 100644 --- a/modules/hypernetworks/ui.py +++ b/modules/hypernetworks/ui.py @@ -9,11 +9,16 @@ from modules import sd_hijack, shared, devices from modules.hypernetworks import hypernetwork -def create_hypernetwork(name, enable_sizes): +def create_hypernetwork(name, enable_sizes, layer_structure=None, add_layer_norm=False): fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") assert not os.path.exists(fn), f"file {fn} already exists" - hypernet = modules.hypernetworks.hypernetwork.Hypernetwork(name=name, enable_sizes=[int(x) for x in enable_sizes]) + hypernet = modules.hypernetworks.hypernetwork.Hypernetwork( + name=name, + enable_sizes=[int(x) for x in enable_sizes], + layer_structure=layer_structure, + add_layer_norm=add_layer_norm, + ) hypernet.save(fn) shared.reload_hypernetworks() diff --git a/modules/shared.py b/modules/shared.py index 0540cae9..faede821 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -260,8 +260,6 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, refresh=sd_models.list_models), "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), "sd_hypernetwork": OptionInfo("None", "Hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}, refresh=reload_hypernetworks), - "sd_hypernetwork_layer_structure": OptionInfo(None, "Hypernetwork layer structure Default: (1,2,1).", gr.Dropdown, lambda: {"choices": [(1, 2, 1), (1, 2, 2, 1), (1, 2, 4, 2, 1)]}), - "sd_hypernetwork_add_layer_norm": OptionInfo(False, "Add layer normalization to hypernetwork architecture."), "sd_hypernetwork_strength": OptionInfo(1.0, "Hypernetwork strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.001}), "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."), "save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"), diff --git a/modules/ui.py b/modules/ui.py index ca46343f..d9ee462f 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -458,14 +458,14 @@ def create_toprow(is_img2img): with gr.Row(): with gr.Column(scale=80): with gr.Row(): - prompt = gr.Textbox(label="Prompt", elem_id=f"{id_part}_prompt", show_label=False, lines=2, + prompt = gr.Textbox(label="Prompt", elem_id=f"{id_part}_prompt", show_label=False, lines=2, placeholder="Prompt (press Ctrl+Enter or Alt+Enter to generate)" ) with gr.Row(): with gr.Column(scale=80): with gr.Row(): - negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=2, + negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=2, placeholder="Negative prompt (press Ctrl+Enter or Alt+Enter to generate)" ) @@ -1198,6 +1198,8 @@ def create_ui(wrap_gradio_gpu_call): with gr.Tab(label="Create hypernetwork"): new_hypernetwork_name = gr.Textbox(label="Name") new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "320", "640", "1280"]) + new_hypernetwork_layer_structure = gr.Dropdown(label="Hypernetwork layer structure", choices=[(1, 2, 1), (1, 2, 2, 1), (1, 2, 4, 2, 1)]) + new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization") with gr.Row(): with gr.Column(scale=3): @@ -1280,6 +1282,8 @@ def create_ui(wrap_gradio_gpu_call): inputs=[ new_hypernetwork_name, new_hypernetwork_sizes, + new_hypernetwork_layer_structure, + new_hypernetwork_add_layer_norm, ], outputs=[ train_hypernetwork_name, diff --git a/webui.py b/webui.py index c7260c7a..177bef74 100644 --- a/webui.py +++ b/webui.py @@ -85,9 +85,7 @@ def initialize(): shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model))) shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork))) shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength) - shared.opts.onchange("sd_hypernetwork_layer_structure", modules.hypernetworks.hypernetwork.apply_layer_structure) - shared.opts.onchange("sd_hypernetwork_add_layer_norm", modules.hypernetworks.hypernetwork.apply_layer_norm) - + # make the program just exit at ctrl+c without waiting for anything def sigint_handler(sig, frame): print(f'Interrupted with signal {sig} in {frame}') @@ -142,7 +140,7 @@ def webui(launch_api=False): create_api(app) wait_on_server(demo) - + sd_samplers.set_samplers() print('Reloading Custom Scripts') @@ -160,4 +158,4 @@ if __name__ == "__main__": if cmd_opts.nowebui: api_only() else: - webui(cmd_opts.api) \ No newline at end of file + webui(cmd_opts.api)