diff --git a/modules/processing.py b/modules/processing.py index 548eec29..f18b7db2 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -653,6 +653,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): if opts.use_scale_latent_for_hires_fix: samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear") + image_conditioning = self.txt2img_image_conditioning(samples) else: decoded_samples = decode_first_stage(self.sd_model, samples) @@ -674,6 +675,12 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples)) + image_conditioning = self.img2img_image_conditioning( + decoded_samples, + samples, + decoded_samples.new_ones(decoded_samples.shape[0], 1, decoded_samples.shape[2], decoded_samples.shape[3]) + ) + shared.state.nextjob() self.sampler = sd_samplers.create_sampler_with_index(sd_samplers.samplers, self.sampler_index, self.sd_model) @@ -684,11 +691,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): x = None devices.torch_gc() - image_conditioning = self.img2img_image_conditioning( - decoded_samples, - samples, - decoded_samples.new_ones(decoded_samples.shape[0], 1, decoded_samples.shape[2], decoded_samples.shape[3]) - ) samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps, image_conditioning=image_conditioning) return samples