diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index a11e01d6..7630fb81 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -331,7 +331,7 @@ def report_statistics(loss_info:dict): -def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): +def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, shuffle_tags, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): # images allows training previews to have infotext. Importing it at the top causes a circular import problem. from modules import images @@ -376,7 +376,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log # dataset loading may take a while, so input validations and early returns should be done before this shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, shuffle_tags=shuffle_tags, model=shared.sd_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size) if unload: shared.sd_model.cond_stage_model.to(devices.cpu) diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index ad726577..e9d97cc1 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -24,7 +24,7 @@ class DatasetEntry: class PersonalizedBase(Dataset): - def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", model=None, device=None, template_file=None, include_cond=False, batch_size=1): + def __init__(self, data_root, width, height, repeats, flip_p=0.5, placeholder_token="*", shuffle_tags=True, model=None, device=None, template_file=None, include_cond=False, batch_size=1): re_word = re.compile(shared.opts.dataset_filename_word_regex) if len(shared.opts.dataset_filename_word_regex) > 0 else None self.placeholder_token = placeholder_token @@ -33,6 +33,7 @@ class PersonalizedBase(Dataset): self.width = width self.height = height self.flip = transforms.RandomHorizontalFlip(p=flip_p) + self.shuffle_tags = shuffle_tags self.dataset = [] @@ -98,7 +99,12 @@ class PersonalizedBase(Dataset): def create_text(self, filename_text): text = random.choice(self.lines) text = text.replace("[name]", self.placeholder_token) - text = text.replace("[filewords]", filename_text) + if self.tag_shuffle: + tags = filename_text.split(',') + random.shuffle(tags) + text = text.replace("[filewords]", ','.join(tags)) + else: + text = text.replace("[filewords]", filename_text) return text def __len__(self): diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index e0babb46..64700e23 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -224,7 +224,7 @@ def validate_train_inputs(model_name, learn_rate, batch_size, data_root, templat if save_model_every or create_image_every: assert log_directory, "Log directory is empty" -def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): +def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, shuffle_tags, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): save_embedding_every = save_embedding_every or 0 create_image_every = create_image_every or 0 validate_train_inputs(embedding_name, learn_rate, batch_size, data_root, template_file, steps, save_embedding_every, create_image_every, log_directory, name="embedding") @@ -271,7 +271,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc # dataset loading may take a while, so input validations and early returns should be done before this shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=embedding_name, shuffle_tags=shuffle_tags, model=shared.sd_model, device=devices.device, template_file=template_file, batch_size=batch_size) embedding.vec.requires_grad = True optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate) diff --git a/modules/ui.py b/modules/ui.py index 2c15abb7..ad383979 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1267,6 +1267,7 @@ def create_ui(wrap_gradio_gpu_call): save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) save_image_with_stored_embedding = gr.Checkbox(label='Save images with embedding in PNG chunks', value=True) preview_from_txt2img = gr.Checkbox(label='Read parameters (prompt, etc...) from txt2img tab when making previews', value=False) + shuffle_tags = gr.Checkbox(label='Shuffleing tags by "," when create texts', value=True) with gr.Row(): interrupt_training = gr.Button(value="Interrupt") @@ -1361,6 +1362,7 @@ def create_ui(wrap_gradio_gpu_call): template_file, save_image_with_stored_embedding, preview_from_txt2img, + shuffle_tags, *txt2img_preview_params, ], outputs=[ @@ -1385,6 +1387,7 @@ def create_ui(wrap_gradio_gpu_call): save_embedding_every, template_file, preview_from_txt2img, + shuffle_tags, *txt2img_preview_params, ], outputs=[