diff --git a/README.md b/README.md index d6e1d50b..ef9b5e31 100644 --- a/README.md +++ b/README.md @@ -65,6 +65,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web - [Composable-Diffusion](https://energy-based-model.github.io/Compositional-Visual-Generation-with-Composable-Diffusion-Models/), a way to use multiple prompts at once - separate prompts using uppercase `AND` - also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2` +- No token limit for prompts (original stable diffusion lets you use up to 75 tokens) ## Installation and Running Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs. diff --git a/modules/processing.py b/modules/processing.py index 3657fe69..d5162ddc 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -123,7 +123,6 @@ class Processed: self.index_of_first_image = index_of_first_image self.styles = p.styles self.job_timestamp = state.job_timestamp - self.max_prompt_tokens = opts.max_prompt_tokens self.eta = p.eta self.ddim_discretize = p.ddim_discretize @@ -171,7 +170,6 @@ class Processed: "infotexts": self.infotexts, "styles": self.styles, "job_timestamp": self.job_timestamp, - "max_prompt_tokens": self.max_prompt_tokens, } return json.dumps(obj) @@ -269,8 +267,6 @@ def fix_seed(p): def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration=0, position_in_batch=0): index = position_in_batch + iteration * p.batch_size - max_tokens = getattr(p, 'max_prompt_tokens', opts.max_prompt_tokens) - generation_params = { "Steps": p.steps, "Sampler": sd_samplers.samplers[p.sampler_index].name, @@ -286,7 +282,6 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration "Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), "Denoising strength": getattr(p, 'denoising_strength', None), "Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta), - "Max tokens": (None if max_tokens == shared.vanilla_max_prompt_tokens else max_tokens) } generation_params.update(p.extra_generation_params) diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 340329c0..2c1332c9 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -36,6 +36,13 @@ def undo_optimizations(): ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward +def get_target_prompt_token_count(token_count): + if token_count < 75: + return 75 + + return math.ceil(token_count / 10) * 10 + + class StableDiffusionModelHijack: fixes = None comments = [] @@ -84,7 +91,7 @@ class StableDiffusionModelHijack: def tokenize(self, text): max_length = opts.max_prompt_tokens - 2 _, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text]) - return remade_batch_tokens[0], token_count, max_length + return remade_batch_tokens[0], token_count, get_target_prompt_token_count(token_count) class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): @@ -114,7 +121,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): def tokenize_line(self, line, used_custom_terms, hijack_comments): id_start = self.wrapped.tokenizer.bos_token_id id_end = self.wrapped.tokenizer.eos_token_id - maxlen = opts.max_prompt_tokens if opts.enable_emphasis: parsed = prompt_parser.parse_prompt_attention(line) @@ -146,19 +152,12 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): used_custom_terms.append((embedding.name, embedding.checksum())) i += embedding_length_in_tokens - if len(remade_tokens) > maxlen - 2: - vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()} - ovf = remade_tokens[maxlen - 2:] - overflowing_words = [vocab.get(int(x), "") for x in ovf] - overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words)) - hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n") - token_count = len(remade_tokens) - remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens)) - remade_tokens = [id_start] + remade_tokens[0:maxlen - 2] + [id_end] + prompt_target_length = get_target_prompt_token_count(token_count) + tokens_to_add = prompt_target_length - len(remade_tokens) + 1 - multipliers = multipliers + [1.0] * (maxlen - 2 - len(multipliers)) - multipliers = [1.0] + multipliers[0:maxlen - 2] + [1.0] + remade_tokens = [id_start] + remade_tokens + [id_end] * tokens_to_add + multipliers = [1.0] + multipliers + [1.0] * tokens_to_add return remade_tokens, fixes, multipliers, token_count diff --git a/modules/shared.py b/modules/shared.py index ca462628..475d7e52 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -123,8 +123,6 @@ interrogator = modules.interrogate.InterrogateModels("interrogate") face_restorers = [] -vanilla_max_prompt_tokens = 77 - def realesrgan_models_names(): import modules.realesrgan_model @@ -225,7 +223,6 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."), "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"), "filter_nsfw": OptionInfo(False, "Filter NSFW content"), - "max_prompt_tokens": OptionInfo(vanilla_max_prompt_tokens, f"Max prompt token count. Two tokens are reserved for for start and end. Default is {vanilla_max_prompt_tokens}. Setting this to a different value will result in different pictures for same seed.", gr.Number, {"precision": 0}), "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}), }))