diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index bcf772d2..4d006366 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -35,9 +35,10 @@ class PersonalizedBase(Dataset): self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)] print("Preparing dataset...") for path in tqdm.tqdm(self.image_paths): - image = Image.open(path) - image = image.convert('RGB') - image = image.resize((self.width, self.height), PIL.Image.BICUBIC) + try: + image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC) + except Exception: + continue filename = os.path.basename(path) filename_tokens = os.path.splitext(filename)[0] diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index d7efdef2..1a672725 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -46,7 +46,10 @@ def preprocess(process_src, process_dst, process_width, process_height, process_ for index, imagefile in enumerate(tqdm.tqdm(files)): subindex = [0] filename = os.path.join(src, imagefile) - img = Image.open(filename).convert("RGB") + try: + img = Image.open(filename).convert("RGB") + except Exception: + continue if shared.state.interrupted: break diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index d6977950..bb05cdc6 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -200,9 +200,6 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if ititial_step > steps: return embedding, filename - tr_img_len = len([os.path.join(data_root, file_path) for file_path in os.listdir(data_root)]) - epoch_len = (tr_img_len * num_repeats) + tr_img_len - pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) for i, (x, text) in pbar: embedding.step = i + ititial_step @@ -226,10 +223,10 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini loss.backward() optimizer.step() - epoch_num = embedding.step // epoch_len - epoch_step = embedding.step - (epoch_num * epoch_len) + 1 + epoch_num = embedding.step // len(ds) + epoch_step = embedding.step - (epoch_num * len(ds)) + 1 - pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{epoch_len}]loss: {losses.mean():.7f}") + pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{len(ds)}]loss: {losses.mean():.7f}") if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0: last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt')