fix pin_memory with different latent sampling method
This commit is contained in:
parent
2d22d72cda
commit
5b57f61ba4
|
@ -416,7 +416,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
|
|||
pin_memory = shared.opts.pin_memory
|
||||
|
||||
ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=training_width, height=training_height, repeats=shared.opts.training_image_repeats_per_epoch, placeholder_token=hypernetwork_name, model=shared.sd_model, cond_model=shared.sd_model.cond_stage_model, device=devices.device, template_file=template_file, include_cond=True, batch_size=batch_size, gradient_step=gradient_step, shuffle_tags=shuffle_tags, tag_drop_out=tag_drop_out, latent_sampling_method=latent_sampling_method)
|
||||
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, batch_size=ds.batch_size, pin_memory=pin_memory)
|
||||
|
||||
latent_sampling_method = ds.latent_sampling_method
|
||||
|
||||
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
|
||||
|
||||
if unload:
|
||||
shared.sd_model.cond_stage_model.to(devices.cpu)
|
||||
|
|
|
@ -138,9 +138,12 @@ class PersonalizedBase(Dataset):
|
|||
return entry
|
||||
|
||||
class PersonalizedDataLoader(DataLoader):
|
||||
def __init__(self, *args, **kwargs):
|
||||
super(PersonalizedDataLoader, self).__init__(shuffle=True, drop_last=True, *args, **kwargs)
|
||||
self.collate_fn = collate_wrapper
|
||||
def __init__(self, dataset, latent_sampling_method="once", batch_size=1, pin_memory=False):
|
||||
super(PersonalizedDataLoader, self).__init__(dataset, shuffle=True, drop_last=True, batch_size=batch_size, pin_memory=pin_memory)
|
||||
if latent_sampling_method == "random":
|
||||
self.collate_fn = collate_wrapper_random
|
||||
else:
|
||||
self.collate_fn = collate_wrapper
|
||||
|
||||
|
||||
class BatchLoader:
|
||||
|
@ -148,10 +151,22 @@ class BatchLoader:
|
|||
self.cond_text = [entry.cond_text for entry in data]
|
||||
self.cond = [entry.cond for entry in data]
|
||||
self.latent_sample = torch.stack([entry.latent_sample for entry in data]).squeeze(1)
|
||||
#self.emb_index = [entry.emb_index for entry in data]
|
||||
#print(self.latent_sample.device)
|
||||
|
||||
def pin_memory(self):
|
||||
self.latent_sample = self.latent_sample.pin_memory()
|
||||
return self
|
||||
|
||||
def collate_wrapper(batch):
|
||||
return BatchLoader(batch)
|
||||
return BatchLoader(batch)
|
||||
|
||||
class BatchLoaderRandom(BatchLoader):
|
||||
def __init__(self, data):
|
||||
super().__init__(data)
|
||||
|
||||
def pin_memory(self):
|
||||
return self
|
||||
|
||||
def collate_wrapper_random(batch):
|
||||
return BatchLoaderRandom(batch)
|
|
@ -277,7 +277,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
|
|||
|
||||
latent_sampling_method = ds.latent_sampling_method
|
||||
|
||||
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, batch_size=ds.batch_size, pin_memory=False)
|
||||
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
|
||||
|
||||
if unload:
|
||||
shared.sd_model.first_stage_model.to(devices.cpu)
|
||||
|
@ -333,11 +333,6 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
|
|||
# go back until we reach gradient accumulation steps
|
||||
if (j + 1) % gradient_step != 0:
|
||||
continue
|
||||
#print(f"grad:{embedding.vec.grad.detach().cpu().abs().mean().item():.7f}")
|
||||
#scaler.unscale_(optimizer)
|
||||
#print(f"grad:{embedding.vec.grad.detach().cpu().abs().mean().item():.7f}")
|
||||
#torch.nn.utils.clip_grad_norm_(embedding.vec, max_norm=1.0)
|
||||
#print(f"grad:{embedding.vec.grad.detach().cpu().abs().mean().item():.7f}")
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
embedding.step += 1
|
||||
|
|
Loading…
Reference in New Issue
Block a user