diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index 30cb5c4b..ebc0d896 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -11,7 +11,7 @@ from modules import prompt_parser, devices, processing, images from modules.shared import opts, cmd_opts, state import modules.shared as shared -from modules.script_callbacks import CGFDenoiserParams, cfg_denoiser_callback +from modules.script_callbacks import CFGDenoiserParams, cfg_denoiser_callback SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options']) @@ -279,7 +279,11 @@ class CFGDenoiser(torch.nn.Module): image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond]) sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma]) - cfg_denoiser_callback(CGFDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps)) + denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps) + cfg_denoiser_callback(denoiser_params) + x_in = denoiser_params.x + image_cond_in = denoiser_params.image_cond + sigma_in = denoiser_params.sigma if tensor.shape[1] == uncond.shape[1]: cond_in = torch.cat([tensor, uncond])