Merge branch 'master' into patch-1

This commit is contained in:
NoCrypt 2022-11-11 21:14:10 +07:00 committed by GitHub
commit 6165f07e74
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 114 additions and 17 deletions

View File

@ -0,0 +1,33 @@
// attaches listeners to the txt2img and img2img galleries to update displayed generation param text when the image changes
let txt2img_gallery, img2img_gallery, modal = undefined;
onUiUpdate(function(){
if (!txt2img_gallery) {
txt2img_gallery = attachGalleryListeners("txt2img")
}
if (!img2img_gallery) {
img2img_gallery = attachGalleryListeners("img2img")
}
if (!modal) {
modal = gradioApp().getElementById('lightboxModal')
modalObserver.observe(modal, { attributes : true, attributeFilter : ['style'] });
}
});
let modalObserver = new MutationObserver(function(mutations) {
mutations.forEach(function(mutationRecord) {
let selectedTab = gradioApp().querySelector('#tabs div button.bg-white')?.innerText
if (mutationRecord.target.style.display === 'none' && selectedTab === 'txt2img' || selectedTab === 'img2img')
gradioApp().getElementById(selectedTab+"_generation_info_button").click()
});
});
function attachGalleryListeners(tab_name) {
gallery = gradioApp().querySelector('#'+tab_name+'_gallery')
gallery?.addEventListener('click', () => gradioApp().getElementById(tab_name+"_generation_info_button").click());
gallery?.addEventListener('keydown', (e) => {
if (e.keyCode == 37 || e.keyCode == 39) // left or right arrow
gradioApp().getElementById(tab_name+"_generation_info_button").click()
});
return gallery;
}

View File

@ -15,6 +15,9 @@ from modules.sd_models import checkpoints_list
from modules.realesrgan_model import get_realesrgan_models from modules.realesrgan_model import get_realesrgan_models
from typing import List from typing import List
if shared.cmd_opts.deepdanbooru:
from modules.deepbooru import get_deepbooru_tags
def upscaler_to_index(name: str): def upscaler_to_index(name: str):
try: try:
return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) return [x.name.lower() for x in shared.sd_upscalers].index(name.lower())
@ -220,11 +223,20 @@ class Api:
if image_b64 is None: if image_b64 is None:
raise HTTPException(status_code=404, detail="Image not found") raise HTTPException(status_code=404, detail="Image not found")
img = self.__base64_to_image(image_b64) img = decode_base64_to_image(image_b64)
img = img.convert('RGB')
# Override object param # Override object param
with self.queue_lock: with self.queue_lock:
if interrogatereq.model == "clip":
processed = shared.interrogator.interrogate(img) processed = shared.interrogator.interrogate(img)
elif interrogatereq.model == "deepdanbooru":
if shared.cmd_opts.deepdanbooru:
processed = get_deepbooru_tags(img)
else:
raise HTTPException(status_code=404, detail="Model not found. Add --deepdanbooru when launching for using the model.")
else:
raise HTTPException(status_code=404, detail="Model not found")
return InterrogateResponse(caption=processed) return InterrogateResponse(caption=processed)

View File

@ -170,6 +170,7 @@ class ProgressResponse(BaseModel):
class InterrogateRequest(BaseModel): class InterrogateRequest(BaseModel):
image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.") image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.")
model: str = Field(default="clip", title="Model", description="The interrogate model used.")
class InterrogateResponse(BaseModel): class InterrogateResponse(BaseModel):
caption: str = Field(default=None, title="Caption", description="The generated caption for the image.") caption: str = Field(default=None, title="Caption", description="The generated caption for the image.")

View File

@ -1,14 +1,23 @@
from pyngrok import ngrok, conf, exception from pyngrok import ngrok, conf, exception
def connect(token, port, region): def connect(token, port, region):
account = None
if token == None: if token == None:
token = 'None' token = 'None'
else:
if ':' in token:
# token = authtoken:username:password
account = token.split(':')[1] + ':' + token.split(':')[-1]
token = token.split(':')[0]
config = conf.PyngrokConfig( config = conf.PyngrokConfig(
auth_token=token, region=region auth_token=token, region=region
) )
try: try:
if account == None:
public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True).public_url public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True).public_url
else:
public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True, auth=account).public_url
except exception.PyngrokNgrokError: except exception.PyngrokNgrokError:
print(f'Invalid ngrok authtoken, ngrok connection aborted.\n' print(f'Invalid ngrok authtoken, ngrok connection aborted.\n'
f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken') f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken')

View File

@ -163,13 +163,21 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
checkpoint_file = checkpoint_info.filename checkpoint_file = checkpoint_info.filename
sd_model_hash = checkpoint_info.hash sd_model_hash = checkpoint_info.hash
if shared.opts.sd_checkpoint_cache > 0 and hasattr(model, "sd_checkpoint_info"): cache_enabled = shared.opts.sd_checkpoint_cache > 0
if cache_enabled:
sd_vae.restore_base_vae(model) sd_vae.restore_base_vae(model)
checkpoints_loaded[model.sd_checkpoint_info] = model.state_dict().copy()
vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
if checkpoint_info not in checkpoints_loaded: if cache_enabled and checkpoint_info in checkpoints_loaded:
# use checkpoint cache
vae_name = sd_vae.get_filename(vae_file) if vae_file else None
vae_message = f" with {vae_name} VAE" if vae_name else ""
print(f"Loading weights [{sd_model_hash}]{vae_message} from cache")
model.load_state_dict(checkpoints_loaded[checkpoint_info])
else:
# load from file
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location) pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
@ -181,6 +189,10 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
model.load_state_dict(sd, strict=False) model.load_state_dict(sd, strict=False)
del sd del sd
if cache_enabled:
# cache newly loaded model
checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
if shared.cmd_opts.opt_channelslast: if shared.cmd_opts.opt_channelslast:
model.to(memory_format=torch.channels_last) model.to(memory_format=torch.channels_last)
@ -199,14 +211,9 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"):
model.first_stage_model.to(devices.dtype_vae) model.first_stage_model.to(devices.dtype_vae)
else: # clean up cache if limit is reached
vae_name = sd_vae.get_filename(vae_file) if vae_file else None if cache_enabled:
vae_message = f" with {vae_name} VAE" if vae_name else "" while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache + 1: # we need to count the current model
print(f"Loading weights [{sd_model_hash}]{vae_message} from cache")
model.load_state_dict(checkpoints_loaded[checkpoint_info])
if shared.opts.sd_checkpoint_cache > 0:
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
checkpoints_loaded.popitem(last=False) # LRU checkpoints_loaded.popitem(last=False) # LRU
model.sd_model_hash = sd_model_hash model.sd_model_hash = sd_model_hash

View File

@ -319,6 +319,8 @@ options_templates.update(options_section(('system', "System"), {
options_templates.update(options_section(('training', "Training"), { options_templates.update(options_section(('training', "Training"), {
"unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."), "unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
"shuffle_tags": OptionInfo(False, "Shuffleing tags by ',' when create texts."),
"tag_drop_out": OptionInfo(0, "Dropout tags when create texts", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.1}),
"save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training can be resumed with HN itself and matching optim file."), "save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training can be resumed with HN itself and matching optim file."),
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"), "dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"), "dataset_filename_join_string": OptionInfo(" ", "Filename join string"),

View File

@ -98,7 +98,12 @@ class PersonalizedBase(Dataset):
def create_text(self, filename_text): def create_text(self, filename_text):
text = random.choice(self.lines) text = random.choice(self.lines)
text = text.replace("[name]", self.placeholder_token) text = text.replace("[name]", self.placeholder_token)
text = text.replace("[filewords]", filename_text) tags = filename_text.split(',')
if shared.opts.tag_drop_out != 0:
tags = [t for t in tags if random.random() > shared.opts.tag_drop_out]
if shared.opts.shuffle_tags:
random.shuffle(tags)
text = text.replace("[filewords]", ','.join(tags))
return text return text
def __len__(self): def __len__(self):

View File

@ -566,6 +566,19 @@ def apply_setting(key, value):
return value return value
def update_generation_info(args):
generation_info, html_info, img_index = args
try:
generation_info = json.loads(generation_info)
if img_index < 0 or img_index >= len(generation_info["infotexts"]):
return html_info
return plaintext_to_html(generation_info["infotexts"][img_index])
except Exception:
pass
# if the json parse or anything else fails, just return the old html_info
return html_info
def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id): def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
def refresh(): def refresh():
refresh_method() refresh_method()
@ -638,6 +651,15 @@ Requested path was: {f}
with gr.Group(): with gr.Group():
html_info = gr.HTML() html_info = gr.HTML()
generation_info = gr.Textbox(visible=False) generation_info = gr.Textbox(visible=False)
if tabname == 'txt2img' or tabname == 'img2img':
generation_info_button = gr.Button(visible=False, elem_id=f"{tabname}_generation_info_button")
generation_info_button.click(
fn=update_generation_info,
_js="(x, y) => [x, y, selected_gallery_index()]",
inputs=[generation_info, html_info],
outputs=[html_info],
preprocess=False
)
save.click( save.click(
fn=wrap_gradio_call(save_files), fn=wrap_gradio_call(save_files),

View File

@ -80,6 +80,8 @@ class Script(scripts.Script):
grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2)) grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2))
grid = images.draw_prompt_matrix(grid, p.width, p.height, prompt_matrix_parts) grid = images.draw_prompt_matrix(grid, p.width, p.height, prompt_matrix_parts)
processed.images.insert(0, grid) processed.images.insert(0, grid)
processed.index_of_first_image = 1
processed.infotexts.insert(0, processed.infotexts[0])
if opts.grid_save: if opts.grid_save:
images.save_image(processed.images[0], p.outpath_grids, "prompt_matrix", prompt=original_prompt, seed=processed.seed, grid=True, p=p) images.save_image(processed.images[0], p.outpath_grids, "prompt_matrix", prompt=original_prompt, seed=processed.seed, grid=True, p=p)

View File

@ -145,6 +145,8 @@ class Script(scripts.Script):
state.job_count = job_count state.job_count = job_count
images = [] images = []
all_prompts = []
infotexts = []
for n, args in enumerate(jobs): for n, args in enumerate(jobs):
state.job = f"{state.job_no + 1} out of {state.job_count}" state.job = f"{state.job_no + 1} out of {state.job_count}"
@ -157,5 +159,7 @@ class Script(scripts.Script):
if checkbox_iterate: if checkbox_iterate:
p.seed = p.seed + (p.batch_size * p.n_iter) p.seed = p.seed + (p.batch_size * p.n_iter)
all_prompts += proc.all_prompts
infotexts += proc.infotexts
return Processed(p, images, p.seed, "") return Processed(p, images, p.seed, "", all_prompts=all_prompts, infotexts=infotexts)