Image CFG Added (Full Implementation)
Uses separate denoiser for edit (instruct-pix2pix) models No impact to txt2img or regular img2img "Image CFG Scale" will only apply to instruct-pix2pix models and metadata will only be added if using such model
This commit is contained in:
parent
3b2ad20ac1
commit
6c6c6636bb
|
@ -76,7 +76,7 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args):
|
|||
processed_image.save(os.path.join(output_dir, filename))
|
||||
|
||||
|
||||
def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args):
|
||||
def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, *args):
|
||||
override_settings = create_override_settings_dict(override_settings_texts)
|
||||
|
||||
is_batch = mode == 5
|
||||
|
@ -142,6 +142,7 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s
|
|||
inpainting_fill=inpainting_fill,
|
||||
resize_mode=resize_mode,
|
||||
denoising_strength=denoising_strength,
|
||||
image_cfg_scale=image_cfg_scale,
|
||||
inpaint_full_res=inpaint_full_res,
|
||||
inpaint_full_res_padding=inpaint_full_res_padding,
|
||||
inpainting_mask_invert=inpainting_mask_invert,
|
||||
|
|
|
@ -445,6 +445,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
|
|||
"Steps": p.steps,
|
||||
"Sampler": p.sampler_name,
|
||||
"CFG scale": p.cfg_scale,
|
||||
"Image CFG scale": getattr(p, 'image_cfg_scale', None),
|
||||
"Seed": all_seeds[index],
|
||||
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
|
||||
"Size": f"{p.width}x{p.height}",
|
||||
|
@ -901,12 +902,13 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|||
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
sampler = None
|
||||
|
||||
def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
|
||||
def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
|
||||
self.init_images = init_images
|
||||
self.resize_mode: int = resize_mode
|
||||
self.denoising_strength: float = denoising_strength
|
||||
self.image_cfg_scale: float = image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None
|
||||
self.init_latent = None
|
||||
self.image_mask = mask
|
||||
self.latent_mask = None
|
||||
|
|
|
@ -1,6 +1,7 @@
|
|||
from collections import deque
|
||||
import torch
|
||||
import inspect
|
||||
import einops
|
||||
import k_diffusion.sampling
|
||||
from modules import prompt_parser, devices, sd_samplers_common
|
||||
|
||||
|
@ -40,6 +41,90 @@ sampler_extra_params = {
|
|||
'sample_dpm_2': ['s_churn', 's_tmin', 's_tmax', 's_noise'],
|
||||
}
|
||||
|
||||
class CFGDenoiserEdit(torch.nn.Module):
|
||||
"""
|
||||
Classifier free guidance denoiser. A wrapper for stable diffusion model (specifically for unet)
|
||||
that can take a noisy picture and produce a noise-free picture using two guidances (prompts)
|
||||
instead of one. Originally, the second prompt is just an empty string, but we use non-empty
|
||||
negative prompt.
|
||||
"""
|
||||
|
||||
def __init__(self, model):
|
||||
super().__init__()
|
||||
self.inner_model = model
|
||||
self.mask = None
|
||||
self.nmask = None
|
||||
self.init_latent = None
|
||||
self.step = 0
|
||||
|
||||
def combine_denoised(self, x_out, conds_list, uncond, cond_scale, image_cfg_scale):
|
||||
denoised_uncond = x_out[-uncond.shape[0]:]
|
||||
denoised = torch.clone(denoised_uncond)
|
||||
|
||||
for i, conds in enumerate(conds_list):
|
||||
for cond_index, weight in conds:
|
||||
out_cond, out_img_cond, out_uncond = x_out.chunk(3)
|
||||
denoised[i] = out_uncond[cond_index] + cond_scale * (out_cond[cond_index] - out_img_cond[cond_index]) + image_cfg_scale * (out_img_cond[cond_index] - out_uncond[cond_index])
|
||||
|
||||
return denoised
|
||||
|
||||
def forward(self, x, sigma, uncond, cond, cond_scale, image_cond, image_cfg_scale):
|
||||
if state.interrupted or state.skipped:
|
||||
raise sd_samplers_common.InterruptedException
|
||||
|
||||
conds_list, tensor = prompt_parser.reconstruct_multicond_batch(cond, self.step)
|
||||
uncond = prompt_parser.reconstruct_cond_batch(uncond, self.step)
|
||||
|
||||
batch_size = len(conds_list)
|
||||
repeats = [len(conds_list[i]) for i in range(batch_size)]
|
||||
|
||||
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x] + [x])
|
||||
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma] + [sigma])
|
||||
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond] + [torch.zeros_like(self.init_latent)])
|
||||
|
||||
denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps)
|
||||
cfg_denoiser_callback(denoiser_params)
|
||||
x_in = denoiser_params.x
|
||||
image_cond_in = denoiser_params.image_cond
|
||||
sigma_in = denoiser_params.sigma
|
||||
|
||||
if tensor.shape[1] == uncond.shape[1]:
|
||||
cond_in = torch.cat([tensor, uncond, uncond])
|
||||
|
||||
if shared.batch_cond_uncond:
|
||||
x_out = self.inner_model(x_in, sigma_in, cond={"c_crossattn": [cond_in], "c_concat": [image_cond_in]})
|
||||
else:
|
||||
x_out = torch.zeros_like(x_in)
|
||||
for batch_offset in range(0, x_out.shape[0], batch_size):
|
||||
a = batch_offset
|
||||
b = a + batch_size
|
||||
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": [cond_in[a:b]], "c_concat": [image_cond_in[a:b]]})
|
||||
else:
|
||||
x_out = torch.zeros_like(x_in)
|
||||
batch_size = batch_size*2 if shared.batch_cond_uncond else batch_size
|
||||
for batch_offset in range(0, tensor.shape[0], batch_size):
|
||||
a = batch_offset
|
||||
b = min(a + batch_size, tensor.shape[0])
|
||||
x_out[a:b] = self.inner_model(x_in[a:b], sigma_in[a:b], cond={"c_crossattn": torch.cat([tensor[a:b]], uncond) , "c_concat": [image_cond_in[a:b]]})
|
||||
|
||||
x_out[-uncond.shape[0]:] = self.inner_model(x_in[-uncond.shape[0]:], sigma_in[-uncond.shape[0]:], cond={"c_crossattn": [uncond], "c_concat": [image_cond_in[-uncond.shape[0]:]]})
|
||||
|
||||
devices.test_for_nans(x_out, "unet")
|
||||
|
||||
if opts.live_preview_content == "Prompt":
|
||||
sd_samplers_common.store_latent(x_out[0:uncond.shape[0]])
|
||||
elif opts.live_preview_content == "Negative prompt":
|
||||
sd_samplers_common.store_latent(x_out[-uncond.shape[0]:])
|
||||
|
||||
denoised = self.combine_denoised(x_out, conds_list, uncond, cond_scale, image_cfg_scale)
|
||||
|
||||
if self.mask is not None:
|
||||
denoised = self.init_latent * self.mask + self.nmask * denoised
|
||||
|
||||
self.step += 1
|
||||
|
||||
return denoised
|
||||
|
||||
|
||||
class CFGDenoiser(torch.nn.Module):
|
||||
"""
|
||||
|
@ -78,8 +163,8 @@ class CFGDenoiser(torch.nn.Module):
|
|||
repeats = [len(conds_list[i]) for i in range(batch_size)]
|
||||
|
||||
x_in = torch.cat([torch.stack([x[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [x])
|
||||
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond])
|
||||
sigma_in = torch.cat([torch.stack([sigma[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [sigma])
|
||||
image_cond_in = torch.cat([torch.stack([image_cond[i] for _ in range(n)]) for i, n in enumerate(repeats)] + [image_cond])
|
||||
|
||||
denoiser_params = CFGDenoiserParams(x_in, image_cond_in, sigma_in, state.sampling_step, state.sampling_steps)
|
||||
cfg_denoiser_callback(denoiser_params)
|
||||
|
@ -160,7 +245,7 @@ class KDiffusionSampler:
|
|||
self.funcname = funcname
|
||||
self.func = getattr(k_diffusion.sampling, self.funcname)
|
||||
self.extra_params = sampler_extra_params.get(funcname, [])
|
||||
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
|
||||
self.model_wrap_cfg = CFGDenoiser(self.model_wrap) if not shared.sd_model.cond_stage_key == "edit" else CFGDenoiserEdit(self.model_wrap)
|
||||
self.sampler_noises = None
|
||||
self.stop_at = None
|
||||
self.eta = None
|
||||
|
@ -260,13 +345,17 @@ class KDiffusionSampler:
|
|||
|
||||
self.model_wrap_cfg.init_latent = x
|
||||
self.last_latent = x
|
||||
|
||||
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args={
|
||||
extra_args={
|
||||
'cond': conditioning,
|
||||
'image_cond': image_conditioning,
|
||||
'uncond': unconditional_conditioning,
|
||||
'cond_scale': p.cfg_scale
|
||||
}, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
||||
'cond_scale': p.cfg_scale,
|
||||
}
|
||||
|
||||
if p.image_cfg_scale:
|
||||
extra_args['image_cfg_scale'] = p.image_cfg_scale
|
||||
|
||||
samples = self.launch_sampling(t_enc + 1, lambda: self.func(self.model_wrap_cfg, xi, extra_args=extra_args, disable=False, callback=self.callback_state, **extra_params_kwargs))
|
||||
|
||||
return samples
|
||||
|
||||
|
|
|
@ -766,6 +766,7 @@ def create_ui():
|
|||
elif category == "cfg":
|
||||
with FormGroup():
|
||||
cfg_scale = gr.Slider(minimum=1.0, maximum=30.0, step=0.5, label='CFG Scale', value=7.0, elem_id="img2img_cfg_scale")
|
||||
image_cfg_scale = gr.Slider(minimum=0, maximum=3.0, step=0.05, label='Image CFG Scale (for instruct-pix2pix models only)', value=1.5, elem_id="img2img_image_cfg_scale")
|
||||
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.75, elem_id="img2img_denoising_strength")
|
||||
|
||||
elif category == "seed":
|
||||
|
@ -861,6 +862,7 @@ def create_ui():
|
|||
batch_count,
|
||||
batch_size,
|
||||
cfg_scale,
|
||||
image_cfg_scale,
|
||||
denoising_strength,
|
||||
seed,
|
||||
subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, seed_checkbox,
|
||||
|
@ -947,6 +949,7 @@ def create_ui():
|
|||
(sampler_index, "Sampler"),
|
||||
(restore_faces, "Face restoration"),
|
||||
(cfg_scale, "CFG scale"),
|
||||
(image_cfg_scale, "Image CFG scale"),
|
||||
(seed, "Seed"),
|
||||
(width, "Size-1"),
|
||||
(height, "Size-2"),
|
||||
|
|
Loading…
Reference in New Issue
Block a user