Added PLMS hijack and made sure to always replace methods
This commit is contained in:
parent
92a17a7a4a
commit
708c3a7bd8
|
@ -1,16 +1,14 @@
|
||||||
import torch
|
import torch
|
||||||
import numpy as np
|
|
||||||
|
|
||||||
from tqdm import tqdm
|
from einops import repeat
|
||||||
from einops import rearrange, repeat
|
|
||||||
from omegaconf import ListConfig
|
from omegaconf import ListConfig
|
||||||
|
|
||||||
from types import MethodType
|
|
||||||
|
|
||||||
import ldm.models.diffusion.ddpm
|
import ldm.models.diffusion.ddpm
|
||||||
import ldm.models.diffusion.ddim
|
import ldm.models.diffusion.ddim
|
||||||
|
import ldm.models.diffusion.plms
|
||||||
|
|
||||||
from ldm.models.diffusion.ddpm import LatentDiffusion
|
from ldm.models.diffusion.ddpm import LatentDiffusion
|
||||||
|
from ldm.models.diffusion.plms import PLMSSampler
|
||||||
from ldm.models.diffusion.ddim import DDIMSampler, noise_like
|
from ldm.models.diffusion.ddim import DDIMSampler, noise_like
|
||||||
|
|
||||||
# =================================================================================================
|
# =================================================================================================
|
||||||
|
@ -19,7 +17,7 @@ from ldm.models.diffusion.ddim import DDIMSampler, noise_like
|
||||||
# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddim.py
|
# https://github.com/runwayml/stable-diffusion/blob/main/ldm/models/diffusion/ddim.py
|
||||||
# =================================================================================================
|
# =================================================================================================
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def sample(self,
|
def sample_ddim(self,
|
||||||
S,
|
S,
|
||||||
batch_size,
|
batch_size,
|
||||||
shape,
|
shape,
|
||||||
|
@ -132,6 +130,153 @@ def p_sample_ddim(self, x, c, t, index, repeat_noise=False, use_original_steps=F
|
||||||
return x_prev, pred_x0
|
return x_prev, pred_x0
|
||||||
|
|
||||||
|
|
||||||
|
# =================================================================================================
|
||||||
|
# Monkey patch PLMSSampler methods.
|
||||||
|
# This one was not actually patched correctly in the RunwayML repo, but we can replicate the changes.
|
||||||
|
# Adapted from:
|
||||||
|
# https://github.com/CompVis/stable-diffusion/blob/main/ldm/models/diffusion/plms.py
|
||||||
|
# =================================================================================================
|
||||||
|
@torch.no_grad()
|
||||||
|
def sample_plms(self,
|
||||||
|
S,
|
||||||
|
batch_size,
|
||||||
|
shape,
|
||||||
|
conditioning=None,
|
||||||
|
callback=None,
|
||||||
|
normals_sequence=None,
|
||||||
|
img_callback=None,
|
||||||
|
quantize_x0=False,
|
||||||
|
eta=0.,
|
||||||
|
mask=None,
|
||||||
|
x0=None,
|
||||||
|
temperature=1.,
|
||||||
|
noise_dropout=0.,
|
||||||
|
score_corrector=None,
|
||||||
|
corrector_kwargs=None,
|
||||||
|
verbose=True,
|
||||||
|
x_T=None,
|
||||||
|
log_every_t=100,
|
||||||
|
unconditional_guidance_scale=1.,
|
||||||
|
unconditional_conditioning=None,
|
||||||
|
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
||||||
|
**kwargs
|
||||||
|
):
|
||||||
|
if conditioning is not None:
|
||||||
|
if isinstance(conditioning, dict):
|
||||||
|
ctmp = conditioning[list(conditioning.keys())[0]]
|
||||||
|
while isinstance(ctmp, list):
|
||||||
|
ctmp = ctmp[0]
|
||||||
|
cbs = ctmp.shape[0]
|
||||||
|
if cbs != batch_size:
|
||||||
|
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
||||||
|
else:
|
||||||
|
if conditioning.shape[0] != batch_size:
|
||||||
|
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
||||||
|
|
||||||
|
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=verbose)
|
||||||
|
# sampling
|
||||||
|
C, H, W = shape
|
||||||
|
size = (batch_size, C, H, W)
|
||||||
|
print(f'Data shape for PLMS sampling is {size}')
|
||||||
|
|
||||||
|
samples, intermediates = self.plms_sampling(conditioning, size,
|
||||||
|
callback=callback,
|
||||||
|
img_callback=img_callback,
|
||||||
|
quantize_denoised=quantize_x0,
|
||||||
|
mask=mask, x0=x0,
|
||||||
|
ddim_use_original_steps=False,
|
||||||
|
noise_dropout=noise_dropout,
|
||||||
|
temperature=temperature,
|
||||||
|
score_corrector=score_corrector,
|
||||||
|
corrector_kwargs=corrector_kwargs,
|
||||||
|
x_T=x_T,
|
||||||
|
log_every_t=log_every_t,
|
||||||
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||||
|
unconditional_conditioning=unconditional_conditioning,
|
||||||
|
)
|
||||||
|
return samples, intermediates
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
|
||||||
|
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
|
||||||
|
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None):
|
||||||
|
b, *_, device = *x.shape, x.device
|
||||||
|
|
||||||
|
def get_model_output(x, t):
|
||||||
|
if unconditional_conditioning is None or unconditional_guidance_scale == 1.:
|
||||||
|
e_t = self.model.apply_model(x, t, c)
|
||||||
|
else:
|
||||||
|
x_in = torch.cat([x] * 2)
|
||||||
|
t_in = torch.cat([t] * 2)
|
||||||
|
|
||||||
|
if isinstance(c, dict):
|
||||||
|
assert isinstance(unconditional_conditioning, dict)
|
||||||
|
c_in = dict()
|
||||||
|
for k in c:
|
||||||
|
if isinstance(c[k], list):
|
||||||
|
c_in[k] = [
|
||||||
|
torch.cat([unconditional_conditioning[k][i], c[k][i]])
|
||||||
|
for i in range(len(c[k]))
|
||||||
|
]
|
||||||
|
else:
|
||||||
|
c_in[k] = torch.cat([unconditional_conditioning[k], c[k]])
|
||||||
|
else:
|
||||||
|
c_in = torch.cat([unconditional_conditioning, c])
|
||||||
|
|
||||||
|
e_t_uncond, e_t = self.model.apply_model(x_in, t_in, c_in).chunk(2)
|
||||||
|
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
||||||
|
|
||||||
|
if score_corrector is not None:
|
||||||
|
assert self.model.parameterization == "eps"
|
||||||
|
e_t = score_corrector.modify_score(self.model, e_t, x, t, c, **corrector_kwargs)
|
||||||
|
|
||||||
|
return e_t
|
||||||
|
|
||||||
|
alphas = self.model.alphas_cumprod if use_original_steps else self.ddim_alphas
|
||||||
|
alphas_prev = self.model.alphas_cumprod_prev if use_original_steps else self.ddim_alphas_prev
|
||||||
|
sqrt_one_minus_alphas = self.model.sqrt_one_minus_alphas_cumprod if use_original_steps else self.ddim_sqrt_one_minus_alphas
|
||||||
|
sigmas = self.model.ddim_sigmas_for_original_num_steps if use_original_steps else self.ddim_sigmas
|
||||||
|
|
||||||
|
def get_x_prev_and_pred_x0(e_t, index):
|
||||||
|
# select parameters corresponding to the currently considered timestep
|
||||||
|
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
||||||
|
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
||||||
|
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
||||||
|
sqrt_one_minus_at = torch.full((b, 1, 1, 1), sqrt_one_minus_alphas[index],device=device)
|
||||||
|
|
||||||
|
# current prediction for x_0
|
||||||
|
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
||||||
|
if quantize_denoised:
|
||||||
|
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
|
||||||
|
# direction pointing to x_t
|
||||||
|
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
|
||||||
|
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
||||||
|
if noise_dropout > 0.:
|
||||||
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||||
|
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||||
|
return x_prev, pred_x0
|
||||||
|
|
||||||
|
e_t = get_model_output(x, t)
|
||||||
|
if len(old_eps) == 0:
|
||||||
|
# Pseudo Improved Euler (2nd order)
|
||||||
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
||||||
|
e_t_next = get_model_output(x_prev, t_next)
|
||||||
|
e_t_prime = (e_t + e_t_next) / 2
|
||||||
|
elif len(old_eps) == 1:
|
||||||
|
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||||
|
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
||||||
|
elif len(old_eps) == 2:
|
||||||
|
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||||
|
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
||||||
|
elif len(old_eps) >= 3:
|
||||||
|
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
||||||
|
e_t_prime = (55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]) / 24
|
||||||
|
|
||||||
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
||||||
|
|
||||||
|
return x_prev, pred_x0, e_t
|
||||||
|
|
||||||
# =================================================================================================
|
# =================================================================================================
|
||||||
# Monkey patch LatentInpaintDiffusion to load the checkpoint with a proper config.
|
# Monkey patch LatentInpaintDiffusion to load the checkpoint with a proper config.
|
||||||
# Adapted from:
|
# Adapted from:
|
||||||
|
@ -175,5 +320,9 @@ def should_hijack_inpainting(checkpoint_info):
|
||||||
def do_inpainting_hijack():
|
def do_inpainting_hijack():
|
||||||
ldm.models.diffusion.ddpm.get_unconditional_conditioning = get_unconditional_conditioning
|
ldm.models.diffusion.ddpm.get_unconditional_conditioning = get_unconditional_conditioning
|
||||||
ldm.models.diffusion.ddpm.LatentInpaintDiffusion = LatentInpaintDiffusion
|
ldm.models.diffusion.ddpm.LatentInpaintDiffusion = LatentInpaintDiffusion
|
||||||
|
|
||||||
ldm.models.diffusion.ddim.DDIMSampler.p_sample_ddim = p_sample_ddim
|
ldm.models.diffusion.ddim.DDIMSampler.p_sample_ddim = p_sample_ddim
|
||||||
ldm.models.diffusion.ddim.DDIMSampler.sample = sample
|
ldm.models.diffusion.ddim.DDIMSampler.sample = sample_ddim
|
||||||
|
|
||||||
|
ldm.models.diffusion.plms.PLMSSampler.p_sample_plms = p_sample_plms
|
||||||
|
ldm.models.diffusion.plms.PLMSSampler.sample = sample_plms
|
|
@ -214,8 +214,6 @@ def load_model():
|
||||||
sd_config = OmegaConf.load(checkpoint_info.config)
|
sd_config = OmegaConf.load(checkpoint_info.config)
|
||||||
|
|
||||||
if should_hijack_inpainting(checkpoint_info):
|
if should_hijack_inpainting(checkpoint_info):
|
||||||
do_inpainting_hijack()
|
|
||||||
|
|
||||||
# Hardcoded config for now...
|
# Hardcoded config for now...
|
||||||
sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
|
sd_config.model.target = "ldm.models.diffusion.ddpm.LatentInpaintDiffusion"
|
||||||
sd_config.model.params.use_ema = False
|
sd_config.model.params.use_ema = False
|
||||||
|
@ -225,6 +223,7 @@ def load_model():
|
||||||
# Create a "fake" config with a different name so that we know to unload it when switching models.
|
# Create a "fake" config with a different name so that we know to unload it when switching models.
|
||||||
checkpoint_info = checkpoint_info._replace(config=checkpoint_info.config.replace(".yaml", "-inpainting.yaml"))
|
checkpoint_info = checkpoint_info._replace(config=checkpoint_info.config.replace(".yaml", "-inpainting.yaml"))
|
||||||
|
|
||||||
|
do_inpainting_hijack()
|
||||||
sd_model = instantiate_from_config(sd_config.model)
|
sd_model = instantiate_from_config(sd_config.model)
|
||||||
load_model_weights(sd_model, checkpoint_info)
|
load_model_weights(sd_model, checkpoint_info)
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user