commit
810e6a407d
|
@ -429,7 +429,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|||
|
||||
optimizer.step()
|
||||
|
||||
if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
|
||||
steps_done = hypernetwork.step + 1
|
||||
|
||||
if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
|
||||
raise RuntimeError("Loss diverged.")
|
||||
|
||||
if len(previous_mean_losses) > 1:
|
||||
|
@ -439,9 +441,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|||
dataset_loss_info = f"dataset loss:{mean(previous_mean_losses):.3f}" + u"\u00B1" + f"({std / (len(previous_mean_losses) ** 0.5):.3f})"
|
||||
pbar.set_description(dataset_loss_info)
|
||||
|
||||
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
|
||||
if hypernetwork_dir is not None and steps_done % save_hypernetwork_every == 0:
|
||||
# Before saving, change name to match current checkpoint.
|
||||
hypernetwork.name = f'{hypernetwork_name}-{hypernetwork.step}'
|
||||
hypernetwork.name = f'{hypernetwork_name}-{steps_done}'
|
||||
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork.name}.pt')
|
||||
hypernetwork.save(last_saved_file)
|
||||
|
||||
|
@ -450,8 +452,8 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
|||
"learn_rate": scheduler.learn_rate
|
||||
})
|
||||
|
||||
if hypernetwork.step > 0 and images_dir is not None and hypernetwork.step % create_image_every == 0:
|
||||
forced_filename = f'{hypernetwork_name}-{hypernetwork.step}'
|
||||
if images_dir is not None and steps_done % create_image_every == 0:
|
||||
forced_filename = f'{hypernetwork_name}-{steps_done}'
|
||||
last_saved_image = os.path.join(images_dir, forced_filename)
|
||||
|
||||
optimizer.zero_grad()
|
||||
|
|
|
@ -52,7 +52,7 @@ class LearnRateScheduler:
|
|||
self.finished = False
|
||||
|
||||
def apply(self, optimizer, step_number):
|
||||
if step_number <= self.end_step:
|
||||
if step_number < self.end_step:
|
||||
return
|
||||
|
||||
try:
|
||||
|
|
|
@ -184,9 +184,8 @@ def write_loss(log_directory, filename, step, epoch_len, values):
|
|||
if shared.opts.training_write_csv_every == 0:
|
||||
return
|
||||
|
||||
if step % shared.opts.training_write_csv_every != 0:
|
||||
if (step + 1) % shared.opts.training_write_csv_every != 0:
|
||||
return
|
||||
|
||||
write_csv_header = False if os.path.exists(os.path.join(log_directory, filename)) else True
|
||||
|
||||
with open(os.path.join(log_directory, filename), "a+", newline='') as fout:
|
||||
|
@ -196,11 +195,11 @@ def write_loss(log_directory, filename, step, epoch_len, values):
|
|||
csv_writer.writeheader()
|
||||
|
||||
epoch = step // epoch_len
|
||||
epoch_step = step - epoch * epoch_len
|
||||
epoch_step = step % epoch_len
|
||||
|
||||
csv_writer.writerow({
|
||||
"step": step + 1,
|
||||
"epoch": epoch + 1,
|
||||
"epoch": epoch,
|
||||
"epoch_step": epoch_step + 1,
|
||||
**values,
|
||||
})
|
||||
|
@ -282,15 +281,16 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
|
|||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
steps_done = embedding.step + 1
|
||||
|
||||
epoch_num = embedding.step // len(ds)
|
||||
epoch_step = embedding.step - (epoch_num * len(ds)) + 1
|
||||
epoch_step = embedding.step % len(ds)
|
||||
|
||||
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step}/{len(ds)}]loss: {losses.mean():.7f}")
|
||||
pbar.set_description(f"[Epoch {epoch_num}: {epoch_step+1}/{len(ds)}]loss: {losses.mean():.7f}")
|
||||
|
||||
if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0:
|
||||
if embedding_dir is not None and steps_done % save_embedding_every == 0:
|
||||
# Before saving, change name to match current checkpoint.
|
||||
embedding.name = f'{embedding_name}-{embedding.step}'
|
||||
embedding.name = f'{embedding_name}-{steps_done}'
|
||||
last_saved_file = os.path.join(embedding_dir, f'{embedding.name}.pt')
|
||||
embedding.save(last_saved_file)
|
||||
embedding_yet_to_be_embedded = True
|
||||
|
@ -300,8 +300,8 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
|
|||
"learn_rate": scheduler.learn_rate
|
||||
})
|
||||
|
||||
if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0:
|
||||
forced_filename = f'{embedding_name}-{embedding.step}'
|
||||
if images_dir is not None and steps_done % create_image_every == 0:
|
||||
forced_filename = f'{embedding_name}-{steps_done}'
|
||||
last_saved_image = os.path.join(images_dir, forced_filename)
|
||||
p = processing.StableDiffusionProcessingTxt2Img(
|
||||
sd_model=shared.sd_model,
|
||||
|
@ -334,7 +334,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
|
|||
|
||||
if save_image_with_stored_embedding and os.path.exists(last_saved_file) and embedding_yet_to_be_embedded:
|
||||
|
||||
last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{embedding.step}.png')
|
||||
last_saved_image_chunks = os.path.join(images_embeds_dir, f'{embedding_name}-{steps_done}.png')
|
||||
|
||||
info = PngImagePlugin.PngInfo()
|
||||
data = torch.load(last_saved_file)
|
||||
|
@ -350,7 +350,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
|
|||
checkpoint = sd_models.select_checkpoint()
|
||||
footer_left = checkpoint.model_name
|
||||
footer_mid = '[{}]'.format(checkpoint.hash)
|
||||
footer_right = '{}v {}s'.format(vectorSize, embedding.step)
|
||||
footer_right = '{}v {}s'.format(vectorSize, steps_done)
|
||||
|
||||
captioned_image = caption_image_overlay(image, title, footer_left, footer_mid, footer_right)
|
||||
captioned_image = insert_image_data_embed(captioned_image, data)
|
||||
|
|
Loading…
Reference in New Issue
Block a user