From 8f5912984794c4c69e429c4636e984854d911b6a Mon Sep 17 00:00:00 2001 From: Melan Date: Thu, 20 Oct 2022 22:37:16 +0200 Subject: [PATCH] Some changes to the tensorboard code and hypernetwork support --- modules/hypernetworks/hypernetwork.py | 18 +++++++- .../textual_inversion/textual_inversion.py | 45 +++++++++++-------- 2 files changed, 44 insertions(+), 19 deletions(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index 74300122..5e919775 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -4,6 +4,7 @@ import html import os import sys import traceback +import tensorboard import tqdm import csv @@ -18,7 +19,6 @@ import modules.textual_inversion.dataset from modules.textual_inversion import textual_inversion from modules.textual_inversion.learn_schedule import LearnRateScheduler - class HypernetworkModule(torch.nn.Module): multiplier = 1.0 @@ -291,6 +291,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate) + if shared.opts.training_enable_tensorboard: + tensorboard_writer = textual_inversion.tensorboard_setup(log_directory) + pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) for i, entries in pbar: hypernetwork.step = i + ititial_step @@ -315,6 +318,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log optimizer.zero_grad() loss.backward() optimizer.step() + mean_loss = losses.mean() if torch.isnan(mean_loss): raise RuntimeError("Loss diverged.") @@ -323,6 +327,14 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0: last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name}-{hypernetwork.step}.pt') hypernetwork.save(last_saved_file) + + if shared.opts.training_enable_tensorboard: + epoch_num = hypernetwork.step // len(ds) + epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1 + + textual_inversion.tensorboard_add(tensorboard_writer, loss=mean_loss, + global_step=hypernetwork.step, step=epoch_step, + learn_rate=scheduler.learn_rate, epoch_num=epoch_num) textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), { "loss": f"{mean_loss:.7f}", @@ -360,6 +372,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log processed = processing.process_images(p) image = processed.images[0] if len(processed.images)>0 else None + if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images: + textual_inversion.tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", + image, hypernetwork.step) + if unload: shared.sd_model.cond_stage_model.to(devices.cpu) shared.sd_model.first_stage_model.to(devices.cpu) diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index ec8176bf..b1dc2596 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -201,19 +201,30 @@ def write_loss(log_directory, filename, step, epoch_len, values): **values, }) +def tensorboard_setup(log_directory): + os.makedirs(os.path.join(log_directory, "tensorboard"), exist_ok=True) + return SummaryWriter( + log_dir=os.path.join(log_directory, "tensorboard"), + flush_secs=shared.opts.training_tensorboard_flush_every) + +def tensorboard_add(tensorboard_writer, loss, global_step, step, learn_rate, epoch_num): + tensorboard_add_scaler(tensorboard_writer, "Loss/train", loss, global_step) + tensorboard_add_scaler(tensorboard_writer, f"Loss/train/epoch-{epoch_num}", loss, step) + tensorboard_add_scaler(tensorboard_writer, "Learn rate/train", learn_rate, global_step) + tensorboard_add_scaler(tensorboard_writer, f"Learn rate/train/epoch-{epoch_num}", learn_rate, step) + def tensorboard_add_scaler(tensorboard_writer, tag, value, step): - if shared.opts.training_enable_tensorboard: - tensorboard_writer.add_scalar(tag=tag, - scalar_value=value, global_step=step) + tensorboard_writer.add_scalar(tag=tag, + scalar_value=value, global_step=step) def tensorboard_add_image(tensorboard_writer, tag, pil_image, step): - if shared.opts.training_enable_tensorboard: - # Convert a pil image to a torch tensor - img_tensor = torch.as_tensor(np.array(pil_image, copy=True)) - img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0], len(pil_image.getbands())) - img_tensor = img_tensor.permute((2, 0, 1)) + # Convert a pil image to a torch tensor + img_tensor = torch.as_tensor(np.array(pil_image, copy=True)) + img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0], + len(pil_image.getbands())) + img_tensor = img_tensor.permute((2, 0, 1)) - tensorboard_writer.add_image(tag, img_tensor, global_step=step) + tensorboard_writer.add_image(tag, img_tensor, global_step=step) def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): assert embedding_name, 'embedding not selected' @@ -268,10 +279,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate) if shared.opts.training_enable_tensorboard: - os.makedirs(os.path.join(log_directory, "tensorboard"), exist_ok=True) - tensorboard_writer = SummaryWriter( - log_dir=os.path.join(log_directory, "tensorboard"), - flush_secs=shared.opts.training_tensorboard_flush_every) + tensorboard_writer = tensorboard_setup(log_directory) pbar = tqdm.tqdm(enumerate(ds), total=steps-initial_step) for i, entries in pbar: @@ -308,10 +316,8 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc embedding_yet_to_be_embedded = True if shared.opts.training_enable_tensorboard: - tensorboard_add_scaler(tensorboard_writer, "Loss/train", losses.mean(), embedding.step) - tensorboard_add_scaler(tensorboard_writer, f"Loss/train/epoch-{epoch_num}", losses.mean(), epoch_step) - tensorboard_add_scaler(tensorboard_writer, "Learn rate/train", scheduler.learn_rate, embedding.step) - tensorboard_add_scaler(tensorboard_writer, f"Learn rate/train/epoch-{epoch_num}", scheduler.learn_rate, epoch_step) + tensorboard_add(tensorboard_writer, loss=losses.mean(), global_step=embedding.step, + step=epoch_step, learn_rate=scheduler.learn_rate, epoch_num=epoch_num) write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), { "loss": f"{losses.mean():.7f}", @@ -377,7 +383,10 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc embedding_yet_to_be_embedded = False image.save(last_saved_image) - tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image, embedding.step) + + if shared.opts.training_enable_tensorboard and shared.opts.training_tensorboard_save_images: + tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", + image, embedding.step) last_saved_image += f", prompt: {preview_text}"