print bucket sizes for training without resizing images #6620
fix an error when generating a picture with embedding in it
This commit is contained in:
parent
486bda9b33
commit
a176d89487
|
@ -118,6 +118,12 @@ class PersonalizedBase(Dataset):
|
|||
self.gradient_step = min(gradient_step, self.length // self.batch_size)
|
||||
self.latent_sampling_method = latent_sampling_method
|
||||
|
||||
if len(groups) > 1:
|
||||
print("Buckets:")
|
||||
for (w, h), ids in sorted(groups.items(), key=lambda x: x[0]):
|
||||
print(f" {w}x{h}: {len(ids)}")
|
||||
print()
|
||||
|
||||
def create_text(self, filename_text):
|
||||
text = random.choice(self.lines)
|
||||
tags = filename_text.split(',')
|
||||
|
@ -140,8 +146,11 @@ class PersonalizedBase(Dataset):
|
|||
entry.latent_sample = shared.sd_model.get_first_stage_encoding(entry.latent_dist).to(devices.cpu)
|
||||
return entry
|
||||
|
||||
|
||||
class GroupedBatchSampler(Sampler):
|
||||
def __init__(self, data_source: PersonalizedBase, batch_size: int):
|
||||
super().__init__(data_source)
|
||||
|
||||
n = len(data_source)
|
||||
self.groups = data_source.groups
|
||||
self.len = n_batch = n // batch_size
|
||||
|
@ -150,21 +159,28 @@ class GroupedBatchSampler(Sampler):
|
|||
self.n_rand_batches = nrb = n_batch - sum(self.base)
|
||||
self.probs = [e%batch_size/nrb/batch_size if nrb>0 else 0 for e in expected]
|
||||
self.batch_size = batch_size
|
||||
|
||||
def __len__(self):
|
||||
return self.len
|
||||
|
||||
def __iter__(self):
|
||||
b = self.batch_size
|
||||
|
||||
for g in self.groups:
|
||||
shuffle(g)
|
||||
|
||||
batches = []
|
||||
for g in self.groups:
|
||||
batches.extend(g[i*b:(i+1)*b] for i in range(len(g) // b))
|
||||
for _ in range(self.n_rand_batches):
|
||||
rand_group = choices(self.groups, self.probs)[0]
|
||||
batches.append(choices(rand_group, k=b))
|
||||
|
||||
shuffle(batches)
|
||||
|
||||
yield from batches
|
||||
|
||||
|
||||
class PersonalizedDataLoader(DataLoader):
|
||||
def __init__(self, dataset, latent_sampling_method="once", batch_size=1, pin_memory=False):
|
||||
super(PersonalizedDataLoader, self).__init__(dataset, batch_sampler=GroupedBatchSampler(dataset, batch_size), pin_memory=pin_memory)
|
||||
|
|
|
@ -76,10 +76,10 @@ def insert_image_data_embed(image, data):
|
|||
next_size = data_np_low.shape[0] + (h-(data_np_low.shape[0] % h))
|
||||
next_size = next_size + ((h*d)-(next_size % (h*d)))
|
||||
|
||||
data_np_low.resize(next_size)
|
||||
data_np_low = np.resize(data_np_low, next_size)
|
||||
data_np_low = data_np_low.reshape((h, -1, d))
|
||||
|
||||
data_np_high.resize(next_size)
|
||||
data_np_high = np.resize(data_np_high, next_size)
|
||||
data_np_high = data_np_high.reshape((h, -1, d))
|
||||
|
||||
edge_style = list(data['string_to_param'].values())[0].cpu().detach().numpy().tolist()[0][:1024]
|
||||
|
|
|
@ -479,7 +479,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
|
|||
epoch_num = embedding.step // steps_per_epoch
|
||||
epoch_step = embedding.step % steps_per_epoch
|
||||
|
||||
description = f"Training textual inversion [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}]loss: {loss_step:.7f}"
|
||||
description = f"Training textual inversion [Epoch {epoch_num}: {epoch_step+1}/{steps_per_epoch}] loss: {loss_step:.7f}"
|
||||
pbar.set_description(description)
|
||||
shared.state.textinfo = description
|
||||
if embedding_dir is not None and steps_done % save_embedding_every == 0:
|
||||
|
|
Loading…
Reference in New Issue
Block a user