Merge remote-tracking branch 'mk2/outpainting-mk2-batch-out'

This commit is contained in:
AUTOMATIC 2022-10-21 17:22:47 +03:00
commit a7aa00d46a

View File

@ -172,23 +172,22 @@ class Script(scripts.Script):
if down > 0: if down > 0:
down = target_h - init_img.height - up down = target_h - init_img.height - up
init_image = p.init_images[0] def expand(init, count, expand_pixels, is_left=False, is_right=False, is_top=False, is_bottom=False):
state.job_count = (1 if left > 0 else 0) + (1 if right > 0 else 0) + (1 if up > 0 else 0) + (1 if down > 0 else 0)
def expand(init, expand_pixels, is_left=False, is_right=False, is_top=False, is_bottom=False):
is_horiz = is_left or is_right is_horiz = is_left or is_right
is_vert = is_top or is_bottom is_vert = is_top or is_bottom
pixels_horiz = expand_pixels if is_horiz else 0 pixels_horiz = expand_pixels if is_horiz else 0
pixels_vert = expand_pixels if is_vert else 0 pixels_vert = expand_pixels if is_vert else 0
res_w = init.width + pixels_horiz images_to_process = []
res_h = init.height + pixels_vert output_images = []
for n in range(count):
res_w = init[n].width + pixels_horiz
res_h = init[n].height + pixels_vert
process_res_w = math.ceil(res_w / 64) * 64 process_res_w = math.ceil(res_w / 64) * 64
process_res_h = math.ceil(res_h / 64) * 64 process_res_h = math.ceil(res_h / 64) * 64
img = Image.new("RGB", (process_res_w, process_res_h)) img = Image.new("RGB", (process_res_w, process_res_h))
img.paste(init, (pixels_horiz if is_left else 0, pixels_vert if is_top else 0)) img.paste(init[n], (pixels_horiz if is_left else 0, pixels_vert if is_top else 0))
mask = Image.new("RGB", (process_res_w, process_res_h), "white") mask = Image.new("RGB", (process_res_w, process_res_h), "white")
draw = ImageDraw.Draw(mask) draw = ImageDraw.Draw(mask)
draw.rectangle(( draw.rectangle((
@ -201,26 +200,27 @@ class Script(scripts.Script):
np_image = (np.asarray(img) / 255.0).astype(np.float64) np_image = (np.asarray(img) / 255.0).astype(np.float64)
np_mask = (np.asarray(mask) / 255.0).astype(np.float64) np_mask = (np.asarray(mask) / 255.0).astype(np.float64)
noised = get_matched_noise(np_image, np_mask, noise_q, color_variation) noised = get_matched_noise(np_image, np_mask, noise_q, color_variation)
out = Image.fromarray(np.clip(noised * 255., 0., 255.).astype(np.uint8), mode="RGB") output_images.append(Image.fromarray(np.clip(noised * 255., 0., 255.).astype(np.uint8), mode="RGB"))
target_width = min(process_width, init.width + pixels_horiz) if is_horiz else img.width
target_height = min(process_height, init.height + pixels_vert) if is_vert else img.height
crop_region = (
0 if is_left else out.width - target_width,
0 if is_top else out.height - target_height,
target_width if is_left else out.width,
target_height if is_top else out.height,
)
image_to_process = out.crop(crop_region)
mask = mask.crop(crop_region)
target_width = min(process_width, init[n].width + pixels_horiz) if is_horiz else img.width
target_height = min(process_height, init[n].height + pixels_vert) if is_vert else img.height
p.width = target_width if is_horiz else img.width p.width = target_width if is_horiz else img.width
p.height = target_height if is_vert else img.height p.height = target_height if is_vert else img.height
p.init_images = [image_to_process]
crop_region = (
0 if is_left else output_images[n].width - target_width,
0 if is_top else output_images[n].height - target_height,
target_width if is_left else output_images[n].width,
target_height if is_top else output_images[n].height,
)
mask = mask.crop(crop_region)
p.image_mask = mask p.image_mask = mask
image_to_process = output_images[n].crop(crop_region)
images_to_process.append(image_to_process)
p.init_images = images_to_process
latent_mask = Image.new("RGB", (p.width, p.height), "white") latent_mask = Image.new("RGB", (p.width, p.height), "white")
draw = ImageDraw.Draw(latent_mask) draw = ImageDraw.Draw(latent_mask)
draw.rectangle(( draw.rectangle((
@ -232,31 +232,52 @@ class Script(scripts.Script):
p.latent_mask = latent_mask p.latent_mask = latent_mask
proc = process_images(p) proc = process_images(p)
proc_img = proc.images[0]
if initial_seed_and_info[0] is None: if initial_seed_and_info[0] is None:
initial_seed_and_info[0] = proc.seed initial_seed_and_info[0] = proc.seed
initial_seed_and_info[1] = proc.info initial_seed_and_info[1] = proc.info
out.paste(proc_img, (0 if is_left else out.width - proc_img.width, 0 if is_top else out.height - proc_img.height)) for n in range(count):
out = out.crop((0, 0, res_w, res_h)) output_images[n].paste(proc.images[n], (0 if is_left else output_images[n].width - proc.images[n].width, 0 if is_top else output_images[n].height - proc.images[n].height))
return out output_images[n] = output_images[n].crop((0, 0, res_w, res_h))
img = init_image return output_images
batch_count = p.n_iter
batch_size = p.batch_size
p.n_iter = 1
state.job_count = batch_count * batch_size * ((1 if left > 0 else 0) + (1 if right > 0 else 0) + (1 if up > 0 else 0) + (1 if down > 0 else 0))
all_processed_images = []
for i in range(batch_count):
imgs = [init_img] * batch_size
state.job = f"Batch {i + 1} out of {batch_count}"
if left > 0: if left > 0:
img = expand(img, left, is_left=True) imgs = expand(imgs, batch_size, left, is_left=True)
if right > 0: if right > 0:
img = expand(img, right, is_right=True) imgs = expand(imgs, batch_size, right, is_right=True)
if up > 0: if up > 0:
img = expand(img, up, is_top=True) imgs = expand(imgs, batch_size, up, is_top=True)
if down > 0: if down > 0:
img = expand(img, down, is_bottom=True) imgs = expand(imgs, batch_size, down, is_bottom=True)
res = Processed(p, [img], initial_seed_and_info[0], initial_seed_and_info[1]) all_processed_images += imgs
all_images = all_processed_images
combined_grid_image = images.image_grid(all_processed_images)
unwanted_grid_because_of_img_count = len(all_processed_images) < 2 and opts.grid_only_if_multiple
if opts.return_grid and not unwanted_grid_because_of_img_count:
all_images = [combined_grid_image] + all_processed_images
res = Processed(p, all_images, initial_seed_and_info[0], initial_seed_and_info[1])
if opts.samples_save: if opts.samples_save:
for img in all_processed_images:
images.save_image(img, p.outpath_samples, "", res.seed, p.prompt, opts.grid_format, info=res.info, p=p) images.save_image(img, p.outpath_samples, "", res.seed, p.prompt, opts.grid_format, info=res.info, p=p)
return res if opts.grid_save and not unwanted_grid_because_of_img_count:
images.save_image(combined_grid_image, p.outpath_grids, "grid", res.seed, p.prompt, opts.grid_format, info=res.info, short_filename=not opts.grid_extended_filename, grid=True, p=p)
return res