Add auto focal point cropping to Preprocess images

This algorithm plots a bunch of points of interest on the source
image and averages their locations to find a center.

Most points come from OpenCV.  One point comes from an
entropy model. OpenCV points account for 50% of the weight and the
entropy based point is the other 50%.

The center of all weighted points is calculated and a bounding box
is drawn as close to centered over that point as possible.
This commit is contained in:
captin411 2022-10-19 03:18:26 -07:00 committed by GitHub
parent f894dd552f
commit abeec4b630
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,5 +1,7 @@
import os
from PIL import Image, ImageOps
import cv2
import numpy as np
from PIL import Image, ImageOps, ImageDraw
import platform
import sys
import tqdm
@ -11,7 +13,7 @@ if cmd_opts.deepdanbooru:
import modules.deepbooru as deepbooru
def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False):
def preprocess(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False, process_entropy_focus=False):
try:
if process_caption:
shared.interrogator.load()
@ -21,7 +23,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
db_opts[deepbooru.OPT_INCLUDE_RANKS] = False
deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts)
preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru)
preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru, process_entropy_focus)
finally:
@ -33,7 +35,7 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
def preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False):
def preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru=False, process_entropy_focus=False):
width = process_width
height = process_height
src = os.path.abspath(process_src)
@ -93,6 +95,8 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
is_tall = ratio > 1.35
is_wide = ratio < 1 / 1.35
processing_option_ran = False
if process_split and is_tall:
img = img.resize((width, height * img.height // img.width))
@ -101,6 +105,8 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
bot = img.crop((0, img.height - height, width, img.height))
save_pic(bot, index)
processing_option_ran = True
elif process_split and is_wide:
img = img.resize((width * img.width // img.height, height))
@ -109,8 +115,143 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pro
right = img.crop((img.width - width, 0, img.width, height))
save_pic(right, index)
else:
processing_option_ran = True
if process_entropy_focus and (is_tall or is_wide):
if is_tall:
img = img.resize((width, height * img.height // img.width))
else:
img = img.resize((width * img.width // img.height, height))
x_focal_center, y_focal_center = image_central_focal_point(img, width, height)
# take the focal point and turn it into crop coordinates that try to center over the focal
# point but then get adjusted back into the frame
y_half = int(height / 2)
x_half = int(width / 2)
x1 = x_focal_center - x_half
if x1 < 0:
x1 = 0
elif x1 + width > img.width:
x1 = img.width - width
y1 = y_focal_center - y_half
if y1 < 0:
y1 = 0
elif y1 + height > img.height:
y1 = img.height - height
x2 = x1 + width
y2 = y1 + height
crop = [x1, y1, x2, y2]
focal = img.crop(tuple(crop))
save_pic(focal, index)
processing_option_ran = True
if not processing_option_ran:
img = images.resize_image(1, img, width, height)
save_pic(img, index)
shared.state.nextjob()
def image_central_focal_point(im, target_width, target_height):
focal_points = []
focal_points.extend(
image_focal_points(im)
)
fp_entropy = image_entropy_point(im, target_width, target_height)
fp_entropy['weight'] = len(focal_points) + 1 # about half of the weight to entropy
focal_points.append(fp_entropy)
weight = 0.0
x = 0.0
y = 0.0
for focal_point in focal_points:
weight += focal_point['weight']
x += focal_point['x'] * focal_point['weight']
y += focal_point['y'] * focal_point['weight']
avg_x = round(x // weight)
avg_y = round(y // weight)
return avg_x, avg_y
def image_focal_points(im):
grayscale = im.convert("L")
# naive attempt at preventing focal points from collecting at watermarks near the bottom
gd = ImageDraw.Draw(grayscale)
gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
np_im = np.array(grayscale)
points = cv2.goodFeaturesToTrack(
np_im,
maxCorners=50,
qualityLevel=0.04,
minDistance=min(grayscale.width, grayscale.height)*0.05,
useHarrisDetector=False,
)
if points is None:
return []
focal_points = []
for point in points:
x, y = point.ravel()
focal_points.append({
'x': x,
'y': y,
'weight': 1.0
})
return focal_points
def image_entropy_point(im, crop_width, crop_height):
img = im.copy()
# just make it easier to slide the test crop with images oriented the same way
if (img.size[0] < img.size[1]):
portrait = True
img = img.rotate(90, expand=1)
e_max = 0
crop_current = [0, 0, crop_width, crop_height]
crop_best = crop_current
while crop_current[2] < img.size[0]:
crop = img.crop(tuple(crop_current))
e = image_entropy(crop)
if (e_max < e):
e_max = e
crop_best = list(crop_current)
crop_current[0] += 4
crop_current[2] += 4
x_mid = int((crop_best[2] - crop_best[0])/2)
y_mid = int((crop_best[3] - crop_best[1])/2)
return {
'x': x_mid,
'y': y_mid,
'weight': 1.0
}
def image_entropy(im):
# greyscale image entropy
band = np.asarray(im.convert("L"))
hist, _ = np.histogram(band, bins=range(0, 256))
hist = hist[hist > 0]
return -np.log2(hist / hist.sum()).sum()