Merge branch 'master' into test_resolve_conflicts

This commit is contained in:
MalumaDev 2022-10-16 17:55:58 +02:00 committed by GitHub
commit ae0fdad64a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 114 additions and 60 deletions

View File

@ -34,7 +34,7 @@ function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_skip
preview.style.height = gallery.clientHeight + "px"
//only watch gallery if there is a generation process going on
check_gallery(id_gallery);
check_gallery(id_gallery);
var progressDiv = gradioApp().querySelectorAll('#' + id_progressbar_span).length > 0;
if(!progressDiv){
@ -73,8 +73,10 @@ function check_gallery(id_gallery){
let galleryBtnSelected = gradioApp().querySelector('#'+id_gallery+' .gallery-item.\\!ring-2')
if (prevSelectedIndex !== -1 && galleryButtons.length>prevSelectedIndex && !galleryBtnSelected) {
//automatically re-open previously selected index (if exists)
activeElement = document.activeElement;
galleryButtons[prevSelectedIndex].click();
showGalleryImage();
showGalleryImage();
if(activeElement) activeElement.focus()
}
})
galleryObservers[id_gallery].observe( gallery, { childList:true, subtree:false })

View File

@ -94,6 +94,15 @@ def prepare_enviroment():
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1")
deepdanbooru_package = os.environ.get('DEEPDANBOORU_PACKAGE', "git+https://github.com/KichangKim/DeepDanbooru.git@edf73df4cdaeea2cf00e9ac08bd8a9026b7a7b26")
xformers_windows_package = os.environ.get('XFORMERS_WINDOWS_PACKAGE', 'https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl')
stable_diffusion_repo = os.environ.get('STABLE_DIFFUSION_REPO', "https://github.com/CompVis/stable-diffusion.git")
taming_transformers_repo = os.environ.get('TAMING_REANSFORMERS_REPO', "https://github.com/CompVis/taming-transformers.git")
k_diffusion_repo = os.environ.get('K_DIFFUSION_REPO', 'https://github.com/crowsonkb/k-diffusion.git')
codeformer_repo = os.environ.get('CODEFORMET_REPO', 'https://github.com/sczhou/CodeFormer.git')
blip_repo = os.environ.get('BLIP_REPO', 'https://github.com/salesforce/BLIP.git')
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc")
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
@ -131,23 +140,23 @@ def prepare_enviroment():
if (not is_installed("xformers") or reinstall_xformers) and xformers and platform.python_version().startswith("3.10"):
if platform.system() == "Windows":
run_pip("install -U -I --no-deps https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/f/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl", "xformers")
run_pip(f"install -U -I --no-deps {xformers_windows_package}", "xformers")
elif platform.system() == "Linux":
run_pip("install xformers", "xformers")
if not is_installed("deepdanbooru") and deepdanbooru:
run_pip("install git+https://github.com/KichangKim/DeepDanbooru.git@edf73df4cdaeea2cf00e9ac08bd8a9026b7a7b26#egg=deepdanbooru[tensorflow] tensorflow==2.10.0 tensorflow-io==0.27.0", "deepdanbooru")
run_pip(f"install {deepdanbooru_package}#egg=deepdanbooru[tensorflow] tensorflow==2.10.0 tensorflow-io==0.27.0", "deepdanbooru")
if not is_installed("pyngrok") and ngrok:
run_pip("install pyngrok", "ngrok")
os.makedirs(dir_repos, exist_ok=True)
git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash)
git_clone("https://github.com/CompVis/taming-transformers.git", repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
git_clone("https://github.com/crowsonkb/k-diffusion.git", repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
git_clone("https://github.com/sczhou/CodeFormer.git", repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
git_clone("https://github.com/salesforce/BLIP.git", repo_dir('BLIP'), "BLIP", blip_commit_hash)
git_clone(stable_diffusion_repo, repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash)
git_clone(taming_transformers_repo, repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
git_clone(k_diffusion_repo, repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
git_clone(blip_repo, repo_dir('BLIP'), "BLIP", blip_commit_hash)
if not is_installed("lpips"):
run_pip(f"install -r {os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}", "requirements for CodeFormer")

View File

@ -20,26 +20,40 @@ import gradio as gr
cached_images = {}
def run_extras(extras_mode, resize_mode, image, image_folder, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility):
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility):
devices.torch_gc()
imageArr = []
# Also keep track of original file names
imageNameArr = []
outputs = []
if extras_mode == 1:
#convert file to pillow image
for img in image_folder:
image = Image.open(img)
imageArr.append(image)
imageNameArr.append(os.path.splitext(img.orig_name)[0])
elif extras_mode == 2:
assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled'
if input_dir == '':
return outputs, "Please select an input directory.", ''
image_list = [file for file in [os.path.join(input_dir, x) for x in os.listdir(input_dir)] if os.path.isfile(file)]
for img in image_list:
image = Image.open(img)
imageArr.append(image)
imageNameArr.append(img)
else:
imageArr.append(image)
imageNameArr.append(None)
outpath = opts.outdir_samples or opts.outdir_extras_samples
if extras_mode == 2 and output_dir != '':
outpath = output_dir
else:
outpath = opts.outdir_samples or opts.outdir_extras_samples
outputs = []
for image, image_name in zip(imageArr, imageNameArr):
if image is None:
return outputs, "Please select an input image.", ''
@ -112,7 +126,8 @@ def run_extras(extras_mode, resize_mode, image, image_folder, gfpgan_visibility,
image.info = existing_pnginfo
image.info["extras"] = info
outputs.append(image)
if extras_mode != 2 or show_extras_results :
outputs.append(image)
devices.torch_gc()

View File

@ -1,6 +1,6 @@
import os
import shutil
import sys
def traverse_all_files(output_dir, image_list, curr_dir=None):
curr_path = output_dir if curr_dir is None else os.path.join(output_dir, curr_dir)
@ -24,10 +24,14 @@ def traverse_all_files(output_dir, image_list, curr_dir=None):
def get_recent_images(dir_name, page_index, step, image_index, tabname):
page_index = int(page_index)
f_list = os.listdir(dir_name)
image_list = []
image_list = traverse_all_files(dir_name, image_list)
image_list = sorted(image_list, key=lambda file: -os.path.getctime(os.path.join(dir_name, file)))
if not os.path.exists(dir_name):
pass
elif os.path.isdir(dir_name):
image_list = traverse_all_files(dir_name, image_list)
image_list = sorted(image_list, key=lambda file: -os.path.getctime(os.path.join(dir_name, file)))
else:
print(f'ERROR: "{dir_name}" is not a directory. Check the path in the settings.', file=sys.stderr)
num = 48 if tabname != "extras" else 12
max_page_index = len(image_list) // num + 1
page_index = max_page_index if page_index == -1 else page_index + step
@ -105,10 +109,8 @@ def show_images_history(gr, opts, tabname, run_pnginfo, switch_dict):
dir_name = opts.outdir_img2img_samples
elif tabname == "extras":
dir_name = opts.outdir_extras_samples
d = dir_name.split("/")
dir_name = "/" if dir_name.startswith("/") else d[0]
for p in d[1:]:
dir_name = os.path.join(dir_name, p)
else:
return
with gr.Row():
renew_page = gr.Button('Renew Page', elem_id=tabname + "_images_history_renew_page")
first_page = gr.Button('First Page')

View File

@ -1,12 +1,14 @@
from pyngrok import ngrok, conf, exception
def connect(token, port):
def connect(token, port, region):
if token == None:
token = 'None'
conf.get_default().auth_token = token
config = conf.PyngrokConfig(
auth_token=token, region=region
)
try:
public_url = ngrok.connect(port).public_url
public_url = ngrok.connect(port, pyngrok_config=config).public_url
except exception.PyngrokNgrokError:
print(f'Invalid ngrok authtoken, ngrok connection aborted.\n'
f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken')

View File

@ -53,11 +53,7 @@ def get_correct_sampler(p):
class StableDiffusionProcessing:
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", styles=None, seed=-1,
subseed=-1, subseed_strength=0, seed_resize_from_h=-1, seed_resize_from_w=-1, seed_enable_extras=True,
sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512,
restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False,
extra_generation_params=None, overlay_images=None, negative_prompt=None, eta=None):
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", styles=None, seed=-1, subseed=-1, subseed_strength=0, seed_resize_from_h=-1, seed_resize_from_w=-1, seed_enable_extras=True, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None, eta=None, do_not_reload_embeddings=False):
self.sd_model = sd_model
self.outpath_samples: str = outpath_samples
self.outpath_grids: str = outpath_grids
@ -84,6 +80,7 @@ class StableDiffusionProcessing:
self.extra_generation_params: dict = extra_generation_params or {}
self.overlay_images = overlay_images
self.eta = eta
self.do_not_reload_embeddings = do_not_reload_embeddings
self.paste_to = None
self.color_corrections = None
self.denoising_strength: float = 0
@ -350,12 +347,6 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
seed = get_fixed_seed(p.seed)
subseed = get_fixed_seed(p.subseed)
if p.outpath_samples is not None:
os.makedirs(p.outpath_samples, exist_ok=True)
if p.outpath_grids is not None:
os.makedirs(p.outpath_grids, exist_ok=True)
modules.sd_hijack.model_hijack.apply_circular(p.tiling)
modules.sd_hijack.model_hijack.clear_comments()
@ -381,7 +372,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
def infotext(iteration=0, position_in_batch=0):
return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch)
if os.path.exists(cmd_opts.embeddings_dir):
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
model_hijack.embedding_db.load_textual_inversion_embeddings()
infotexts = []

View File

@ -43,6 +43,7 @@ parser.add_argument("--unload-gfpgan", action='store_true', help="does not do an
parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast")
parser.add_argument("--share", action='store_true', help="use share=True for gradio and make the UI accessible through their site (doesn't work for me but you might have better luck)")
parser.add_argument("--ngrok", type=str, help="ngrok authtoken, alternative to gradio --share", default=None)
parser.add_argument("--ngrok-region", type=str, help="The region in which ngrok should start.", default="us")
parser.add_argument("--codeformer-models-path", type=str, help="Path to directory with codeformer model file(s).", default=os.path.join(models_path, 'Codeformer'))
parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory with GFPGAN model file(s).", default=os.path.join(models_path, 'GFPGAN'))
parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN'))

View File

@ -298,6 +298,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc
sd_model=shared.sd_model,
do_not_save_grid=True,
do_not_save_samples=True,
do_not_reload_embeddings=True,
)
if preview_from_txt2img:

View File

@ -60,7 +60,7 @@ if not cmd_opts.share and not cmd_opts.listen:
if cmd_opts.ngrok != None:
import modules.ngrok as ngrok
print('ngrok authtoken detected, trying to connect...')
ngrok.connect(cmd_opts.ngrok, cmd_opts.port if cmd_opts.port != None else 7860)
ngrok.connect(cmd_opts.ngrok, cmd_opts.port if cmd_opts.port != None else 7860, cmd_opts.ngrok_region)
def gr_show(visible=True):
@ -512,9 +512,11 @@ def create_toprow(is_img2img):
with gr.Row():
with gr.Column(scale=1, elem_id="style_pos_col"):
prompt_style = gr.Dropdown(label="Style 1", elem_id=f"{id_part}_style_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())))
prompt_style.save_to_config = True
with gr.Column(scale=1, elem_id="style_neg_col"):
prompt_style2 = gr.Dropdown(label="Style 2", elem_id=f"{id_part}_style2_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())))
prompt_style2.save_to_config = True
return prompt, roll, prompt_style, negative_prompt, prompt_style2, submit, button_interrogate, button_deepbooru, prompt_style_apply, save_style, paste, token_counter, token_button
@ -570,6 +572,24 @@ def create_ui(wrap_gradio_gpu_call):
import modules.img2img
import modules.txt2img
def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
def refresh():
refresh_method()
args = refreshed_args() if callable(refreshed_args) else refreshed_args
for k, v in args.items():
setattr(refresh_component, k, v)
return gr.update(**(args or {}))
refresh_button = gr.Button(value=refresh_symbol, elem_id=elem_id)
refresh_button.click(
fn = refresh,
inputs = [],
outputs = [refresh_component]
)
return refresh_button
with gr.Blocks(analytics_enabled=False) as txt2img_interface:
txt2img_prompt, roll, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, _, txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, token_counter, token_button = create_toprow(is_img2img=False)
dummy_component = gr.Label(visible=False)
@ -1061,6 +1081,15 @@ def create_ui(wrap_gradio_gpu_call):
with gr.TabItem('Batch Process'):
image_batch = gr.File(label="Batch Process", file_count="multiple", interactive=True, type="file")
with gr.TabItem('Batch from Directory'):
extras_batch_input_dir = gr.Textbox(label="Input directory", **shared.hide_dirs,
placeholder="A directory on the same machine where the server is running."
)
extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs,
placeholder="Leave blank to save images to the default path."
)
show_extras_results = gr.Checkbox(label='Show result images', value=True)
with gr.Tabs(elem_id="extras_resize_mode"):
with gr.TabItem('Scale by'):
upscaling_resize = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Resize", value=2)
@ -1105,6 +1134,9 @@ def create_ui(wrap_gradio_gpu_call):
dummy_component,
extras_image,
image_batch,
extras_batch_input_dir,
extras_batch_output_dir,
show_extras_results,
gfpgan_visibility,
codeformer_visibility,
codeformer_weight,
@ -1248,8 +1280,12 @@ def create_ui(wrap_gradio_gpu_call):
with gr.Tab(label="Train"):
gr.HTML(value="<p style='margin-bottom: 0.7em'>Train an embedding; must specify a directory with a set of 1:1 ratio images</p>")
train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()])
with gr.Row():
train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys()))
create_refresh_button(train_embedding_name, sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings, lambda: {"choices": sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())}, "refresh_train_embedding_name")
with gr.Row():
train_hypernetwork_name = gr.Dropdown(label='Hypernetwork', choices=[x for x in shared.hypernetworks.keys()])
create_refresh_button(train_hypernetwork_name, shared.reload_hypernetworks, lambda: {"choices": sorted([x for x in shared.hypernetworks.keys()])}, "refresh_train_hypernetwork_name")
learn_rate = gr.Textbox(label='Learning rate', placeholder="Learning rate", value="0.005")
batch_size = gr.Number(label='Batch size', value=1, precision=0)
dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images")
@ -1418,26 +1454,11 @@ def create_ui(wrap_gradio_gpu_call):
if info.refresh is not None:
if is_quicksettings:
res = comp(label=info.label, value=fun, **(args or {}))
refresh_button = gr.Button(value=refresh_symbol, elem_id="refresh_"+key)
refresh_button = create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key)
else:
with gr.Row(variant="compact"):
res = comp(label=info.label, value=fun, **(args or {}))
refresh_button = gr.Button(value=refresh_symbol, elem_id="refresh_" + key)
def refresh():
info.refresh()
refreshed_args = info.component_args() if callable(info.component_args) else info.component_args
for k, v in refreshed_args.items():
setattr(res, k, v)
return gr.update(**(refreshed_args or {}))
refresh_button.click(
fn=refresh,
inputs=[],
outputs=[res],
)
refresh_button = create_refresh_button(res, info.refresh, info.component_args, "refresh_" + key)
else:
res = comp(label=info.label, value=fun, **(args or {}))
@ -1448,7 +1469,10 @@ def create_ui(wrap_gradio_gpu_call):
component_dict = {}
def open_folder(f):
if not os.path.isdir(f):
if not os.path.exists(f):
print(f'Folder "{f}" does not exist. After you create an image, the folder will be created.')
return
elif not os.path.isdir(f):
print(f"""
WARNING
An open_folder request was made with an argument that is not a folder.
@ -1778,7 +1802,9 @@ Requested path was: {f}
saved_value = ui_settings.get(key, None)
if saved_value is None:
ui_settings[key] = getattr(obj, field)
elif condition is None or condition(saved_value):
elif condition and not condition(saved_value):
print(f'Warning: Bad ui setting value: {key}: {saved_value}; Default value "{getattr(obj, field)}" will be used instead.')
else:
setattr(obj, field, saved_value)
if type(x) in [gr.Slider, gr.Radio, gr.Checkbox, gr.Textbox, gr.Number] and x.visible:
@ -1802,6 +1828,11 @@ Requested path was: {f}
if type(x) == gr.Number:
apply_field(x, 'value')
# Since there are many dropdowns that shouldn't be saved,
# we only mark dropdowns that should be saved.
if type(x) == gr.Dropdown and getattr(x, 'save_to_config', False):
apply_field(x, 'value', lambda val: val in x.choices)
visit(txt2img_interface, loadsave, "txt2img")
visit(img2img_interface, loadsave, "img2img")
visit(extras_interface, loadsave, "extras")

View File

@ -478,7 +478,7 @@ input[type="range"]{
padding: 0;
}
#refresh_sd_model_checkpoint, #refresh_sd_hypernetwork{
#refresh_sd_model_checkpoint, #refresh_sd_hypernetwork, #refresh_train_hypernetwork_name, #refresh_train_embedding_name{
max-width: 2.5em;
min-width: 2.5em;
height: 2.4em;